1158 lines
31 KiB
C
1158 lines
31 KiB
C
/*
|
|
* Copyright (c) 2018-2019 Nordic Semiconductor ASA
|
|
* Copyright (c) 2015 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Public APIs for UART drivers
|
|
*/
|
|
|
|
#ifndef ZEPHYR_INCLUDE_UART_H_
|
|
#define ZEPHYR_INCLUDE_UART_H_
|
|
|
|
/**
|
|
* @brief UART Interface
|
|
* @defgroup uart_interface UART Interface
|
|
* @ingroup io_interfaces
|
|
* @{
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stddef.h>
|
|
|
|
#include <device.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/** @brief Line control signals. */
|
|
enum uart_line_ctrl {
|
|
UART_LINE_CTRL_RTS = BIT(1),
|
|
UART_LINE_CTRL_DTR = BIT(2),
|
|
UART_LINE_CTRL_DCD = BIT(3),
|
|
UART_LINE_CTRL_DSR = BIT(4),
|
|
};
|
|
|
|
/**
|
|
* @brief Types of events passed to callback in UART_ASYNC_API
|
|
*
|
|
* Receiving:
|
|
* 1. To start receiving, uart_rx_enable has to be called with first buffer
|
|
* 2. When receiving starts to current buffer, UART_RX_BUF_REQUEST will be
|
|
* generated, in response to that user can either:
|
|
*
|
|
* - Provide second buffer using uart_rx_buf_rsp, when first buffer is
|
|
* filled, receiving will automatically start to second buffer.
|
|
* - Ignore the event, this way when current buffer is filled UART_RX_DONE
|
|
* event will be generated and receiving will be stopped.
|
|
*
|
|
* 3. If some data was received and timeout occurred UART_RX_RDY event will be
|
|
* generated. It can happen multiples times for the same buffer. RX timeout
|
|
* is counted from last byte received i.e. if no data was received, there
|
|
* won't be any timeout event.
|
|
* 4. After buffer is filled UART_RX_RDY will be generated, immediately
|
|
* followed by UART_RX_BUF_RELEASED indicating that current buffer is no
|
|
* longer used.
|
|
* 5. If there was second buffer provided, it will become current buffer and
|
|
* we start again at point 2.
|
|
* If no second buffer was specified receiving is stopped and
|
|
* UART_RX_DISABLED event is generated. After that whole process can be
|
|
* repeated.
|
|
*
|
|
* Any time during reception UART_RX_STOPPED event can occur. It will be
|
|
* followed by UART_RX_BUF_RELEASED event for every buffer currently passed to
|
|
* driver and finally by UART_RX_DISABLED event.
|
|
*
|
|
* Receiving can be disabled using uart_rx_disable, after calling that
|
|
* function any data received will be lost, UART_RX_BUF_RELEASED event will be
|
|
* generated for every buffer currently passed to driver and UART_RX_DISABLED
|
|
* event will occur.
|
|
*
|
|
* Transmitting:
|
|
* 1. Transmitting starts by uart_tx function.
|
|
* 2. If whole buffer was transmitted UART_TX_DONE is generated.
|
|
* If timeout occurred UART_TX_ABORTED will be generated.
|
|
*
|
|
* Transmitting can be aborted using uart_tx_abort, after calling that
|
|
* function UART_TX_ABORTED event will be generated.
|
|
*
|
|
*/
|
|
enum uart_event_type {
|
|
/** @brief Whole TX buffer was transmitted. */
|
|
UART_TX_DONE,
|
|
/**
|
|
* @brief Transmitting aborted due to timeout or uart_tx_abort call
|
|
*
|
|
* When flow control is enabled, there is a possibility that TX transfer
|
|
* won't finish in the allotted time. Some data may have been
|
|
* transferred, information about it can be found in event data.
|
|
*/
|
|
UART_TX_ABORTED,
|
|
/**
|
|
* @brief Received data is ready for processing.
|
|
*
|
|
* This event is generated in two cases:
|
|
* - When RX timeout occurred, and data was stored in provided buffer.
|
|
* This can happen multiple times in the same buffer.
|
|
* - When provided buffer is full.
|
|
*/
|
|
UART_RX_RDY,
|
|
/**
|
|
* @brief Driver requests next buffer for continuous reception.
|
|
*
|
|
* This event is triggered when receiving has started for a new buffer,
|
|
* i.e. it's time to provide a next buffer for a seamless switchover to
|
|
* it. For continuous reliable receiving, user should provide another RX
|
|
* buffer in response to this event, using uart_rx_buf_rsp function
|
|
*
|
|
* If uart_rx_buf_rsp is not called before current buffer
|
|
* is filled up, receiving will stop.
|
|
*/
|
|
UART_RX_BUF_REQUEST,
|
|
/**
|
|
* @brief Buffer is no longer used by UART driver.
|
|
*/
|
|
UART_RX_BUF_RELEASED,
|
|
/**
|
|
* @brief RX has been disabled and can be reenabled.
|
|
*
|
|
* This event is generated whenever receiver has been stopped, disabled
|
|
* or finished its operation and can be enabled again using
|
|
* uart_rx_enable
|
|
*/
|
|
UART_RX_DISABLED,
|
|
/**
|
|
* @brief RX has stopped due to external event.
|
|
*
|
|
* Reason is one of uart_rx_stop_reason.
|
|
*/
|
|
UART_RX_STOPPED,
|
|
};
|
|
|
|
|
|
/**
|
|
* @brief Reception stop reasons.
|
|
*
|
|
* Values that correspond to events or errors responsible for stopping
|
|
* receiving.
|
|
*/
|
|
enum uart_rx_stop_reason {
|
|
/** @brief Overrun error */
|
|
UART_ERROR_OVERRUN = (1 << 0),
|
|
/** @brief Parity error */
|
|
UART_ERROR_PARITY = (1 << 1),
|
|
/** @brief Framing error */
|
|
UART_ERROR_FRAMING = (1 << 2),
|
|
/**
|
|
* @brief Break interrupt
|
|
*
|
|
* A break interrupt was received. This happens when the serial input
|
|
* is held at a logic '0' state for longer than the sum of
|
|
* start time + data bits + parity + stop bits.
|
|
*/
|
|
UART_BREAK = (1 << 3),
|
|
};
|
|
|
|
/** @brief Backward compatibility defines, deprecated */
|
|
#define UART_ERROR_BREAK UART_BREAK
|
|
#define LINE_CTRL_BAUD_RATE (1 << 0)
|
|
#define LINE_CTRL_RTS UART_LINE_CTRL_RTS
|
|
#define LINE_CTRL_DTR UART_LINE_CTRL_DTR
|
|
#define LINE_CTRL_DCD UART_LINE_CTRL_DCD
|
|
#define LINE_CTRL_DSR UART_LINE_CTRL_DSR
|
|
|
|
|
|
/** @brief UART TX event data. */
|
|
struct uart_event_tx {
|
|
/** @brief Pointer to current buffer. */
|
|
const u8_t *buf;
|
|
/** @brief Number of bytes sent. */
|
|
size_t len;
|
|
};
|
|
|
|
/** @brief UART RX event data. */
|
|
struct uart_event_rx {
|
|
/** @brief Pointer to current buffer. */
|
|
u8_t *buf;
|
|
/** @brief Offset from buffer start to currently received data. */
|
|
size_t offset;
|
|
/** @brief Number of bytes received. */
|
|
size_t len;
|
|
};
|
|
|
|
/** @brief UART RX buffer released event data. */
|
|
struct uart_event_rx_buf {
|
|
/* @brief Pointer to buffer that is no longer in use. */
|
|
u8_t *buf;
|
|
};
|
|
|
|
/** @brief UART RX stopped data. */
|
|
struct uart_event_rx_stop {
|
|
/** @brief Reason why receiving stopped */
|
|
enum uart_rx_stop_reason reason;
|
|
/** @brief Last received data. */
|
|
struct uart_event_rx data;
|
|
};
|
|
|
|
/** @brief Structure containing information about current event. */
|
|
struct uart_event {
|
|
/** @brief Type of event */
|
|
enum uart_event_type type;
|
|
/** @brief Event data */
|
|
union {
|
|
/** @brief UART_TX_DONE and UART_TX_ABORTED events data. */
|
|
struct uart_event_tx tx;
|
|
/** @brief UART_RX_RDY event data. */
|
|
struct uart_event_rx rx;
|
|
/** @brief UART_RX_BUF_RELEASED event data. */
|
|
struct uart_event_rx_buf rx_buf;
|
|
/** @brief UART_RX_STOPPED event data. */
|
|
struct uart_event_rx_stop rx_stop;
|
|
} data;
|
|
};
|
|
|
|
/**
|
|
* @typedef uart_callback_t
|
|
* @brief Define the application callback function signature for
|
|
* uart_callback_set() function.
|
|
*
|
|
* @param evt Pointer to uart_event structure.
|
|
* @param user_data Pointer to data specified by user.
|
|
*/
|
|
typedef void (*uart_callback_t)(struct uart_event *evt, void *user_data);
|
|
|
|
/**
|
|
* @brief Options for @a UART initialization.
|
|
*/
|
|
#define UART_OPTION_AFCE 0x01
|
|
|
|
/**
|
|
* @brief UART controller configuration structure
|
|
*
|
|
* @param baudrate Baudrate setting in bps
|
|
* @param parity Parity bit, use @ref uart_config_parity
|
|
* @param stop_bits Stop bits, use @ref uart_config_stop_bits
|
|
* @param data_bits Data bits, use @ref uart_config_data_bits
|
|
* @param flow_ctrl Flow control setting, use @ref uart_config_flow_control
|
|
*/
|
|
struct uart_config {
|
|
u32_t baudrate;
|
|
u8_t parity;
|
|
u8_t stop_bits;
|
|
u8_t data_bits;
|
|
u8_t flow_ctrl;
|
|
};
|
|
|
|
/** @brief Parity modes */
|
|
enum uart_config_parity {
|
|
UART_CFG_PARITY_NONE,
|
|
UART_CFG_PARITY_ODD,
|
|
UART_CFG_PARITY_EVEN,
|
|
UART_CFG_PARITY_MARK,
|
|
UART_CFG_PARITY_SPACE,
|
|
};
|
|
|
|
/** @brief Number of stop bits. */
|
|
enum uart_config_stop_bits {
|
|
UART_CFG_STOP_BITS_0_5,
|
|
UART_CFG_STOP_BITS_1,
|
|
UART_CFG_STOP_BITS_1_5,
|
|
UART_CFG_STOP_BITS_2,
|
|
};
|
|
|
|
/** @brief Number of data bits. */
|
|
enum uart_config_data_bits {
|
|
UART_CFG_DATA_BITS_5,
|
|
UART_CFG_DATA_BITS_6,
|
|
UART_CFG_DATA_BITS_7,
|
|
UART_CFG_DATA_BITS_8,
|
|
UART_CFG_DATA_BITS_9,
|
|
};
|
|
|
|
/**
|
|
* @brief Hardware flow control options.
|
|
*
|
|
* With flow control set to none, any operations related to flow control
|
|
* signals can be managed by user with uart_line_ctrl functions.
|
|
* In other cases, flow control is managed by hardware/driver.
|
|
*/
|
|
enum uart_config_flow_control {
|
|
UART_CFG_FLOW_CTRL_NONE,
|
|
UART_CFG_FLOW_CTRL_RTS_CTS,
|
|
UART_CFG_FLOW_CTRL_DTR_DSR,
|
|
};
|
|
|
|
/**
|
|
* @typedef uart_irq_callback_user_data_t
|
|
* @brief Define the application callback function signature for
|
|
* uart_irq_callback_user_data_set() function.
|
|
*
|
|
* @param user_data Arbitrary user data.
|
|
*/
|
|
typedef void (*uart_irq_callback_user_data_t)(void *user_data);
|
|
|
|
/**
|
|
* @typedef uart_irq_callback_t
|
|
* @brief Define the application callback function signature for legacy
|
|
* uart_irq_callback_set().
|
|
*
|
|
* @param port Device struct for the UART device.
|
|
*/
|
|
typedef void (*uart_irq_callback_t)(struct device *port);
|
|
|
|
/**
|
|
* @typedef uart_irq_config_func_t
|
|
* @brief For configuring IRQ on each individual UART device.
|
|
*
|
|
* @internal
|
|
*/
|
|
typedef void (*uart_irq_config_func_t)(struct device *port);
|
|
|
|
/**
|
|
* @brief UART device configuration.
|
|
*
|
|
* @param port Base port number
|
|
* @param base Memory mapped base address
|
|
* @param regs Register address
|
|
* @param sys_clk_freq System clock frequency in Hz
|
|
*/
|
|
struct uart_device_config {
|
|
union {
|
|
u32_t port;
|
|
u8_t *base;
|
|
u32_t regs;
|
|
};
|
|
|
|
u32_t sys_clk_freq;
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API)
|
|
uart_irq_config_func_t irq_config_func;
|
|
#endif
|
|
};
|
|
|
|
/** @brief Driver API structure. */
|
|
struct uart_driver_api {
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
int (*callback_set)(struct device *dev, uart_callback_t callback,
|
|
void *user_data);
|
|
|
|
int (*tx)(struct device *dev, const u8_t *buf, size_t len,
|
|
u32_t timeout);
|
|
int (*tx_abort)(struct device *dev);
|
|
|
|
int (*rx_enable)(struct device *dev, u8_t *buf, size_t len,
|
|
u32_t timeout);
|
|
int (*rx_buf_rsp)(struct device *dev, u8_t *buf, size_t len);
|
|
int (*rx_disable)(struct device *dev);
|
|
|
|
#endif
|
|
|
|
/** Console I/O function */
|
|
int (*poll_in)(struct device *dev, unsigned char *p_char);
|
|
void (*poll_out)(struct device *dev, unsigned char out_char);
|
|
|
|
/** Console I/O function */
|
|
int (*err_check)(struct device *dev);
|
|
|
|
/** UART configuration functions */
|
|
int (*configure)(struct device *dev, const struct uart_config *cfg);
|
|
int (*config_get)(struct device *dev, struct uart_config *cfg);
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
/** Interrupt driven FIFO fill function */
|
|
int (*fifo_fill)(struct device *dev, const u8_t *tx_data, int len);
|
|
|
|
/** Interrupt driven FIFO read function */
|
|
int (*fifo_read)(struct device *dev, u8_t *rx_data, const int size);
|
|
|
|
/** Interrupt driven transfer enabling function */
|
|
void (*irq_tx_enable)(struct device *dev);
|
|
|
|
/** Interrupt driven transfer disabling function */
|
|
void (*irq_tx_disable)(struct device *dev);
|
|
|
|
/** Interrupt driven transfer ready function */
|
|
int (*irq_tx_ready)(struct device *dev);
|
|
|
|
/** Interrupt driven receiver enabling function */
|
|
void (*irq_rx_enable)(struct device *dev);
|
|
|
|
/** Interrupt driven receiver disabling function */
|
|
void (*irq_rx_disable)(struct device *dev);
|
|
|
|
/** Interrupt driven transfer complete function */
|
|
int (*irq_tx_complete)(struct device *dev);
|
|
|
|
/** Interrupt driven receiver ready function */
|
|
int (*irq_rx_ready)(struct device *dev);
|
|
|
|
/** Interrupt driven error enabling function */
|
|
void (*irq_err_enable)(struct device *dev);
|
|
|
|
/** Interrupt driven error disabling function */
|
|
void (*irq_err_disable)(struct device *dev);
|
|
|
|
/** Interrupt driven pending status function */
|
|
int (*irq_is_pending)(struct device *dev);
|
|
|
|
/** Interrupt driven interrupt update function */
|
|
int (*irq_update)(struct device *dev);
|
|
|
|
/** Set the irq callback function */
|
|
void (*irq_callback_set)(struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *user_data);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_LINE_CTRL
|
|
int (*line_ctrl_set)(struct device *dev, u32_t ctrl, u32_t val);
|
|
int (*line_ctrl_get)(struct device *dev, u32_t ctrl, u32_t *val);
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_DRV_CMD
|
|
int (*drv_cmd)(struct device *dev, u32_t cmd, u32_t p);
|
|
#endif
|
|
|
|
};
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
/**
|
|
* @brief Set event handler function.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param callback Event handler.
|
|
* @param user_data Data to pass to event handler function.
|
|
*
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
static inline int uart_callback_set(struct device *dev,
|
|
uart_callback_t callback,
|
|
void *user_data)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->callback_set(dev, callback, user_data);
|
|
}
|
|
|
|
/**
|
|
* @brief Send given number of bytes from buffer through UART.
|
|
*
|
|
* Function returns immediately and event handler,
|
|
* set using @ref uart_callback_set, is called after transfer is finished.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param buf Pointer to transmit buffer.
|
|
* @param len Length of transmit buffer.
|
|
* @param timeout Timeout in milliseconds. Valid only if flow control is enabled
|
|
*
|
|
* @retval -EBUSY There is already an ongoing transfer.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
static inline int uart_tx(struct device *dev,
|
|
const u8_t *buf,
|
|
size_t len,
|
|
u32_t timeout)
|
|
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->tx(dev, buf, len, timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Abort current TX transmission.
|
|
*
|
|
* UART_TX_DONE event will be generated with amount of data sent.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval -EFAULT There is no active transmission.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
static inline int uart_tx_abort(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->tx_abort(dev);
|
|
}
|
|
|
|
/**
|
|
* @brief Start receiving data through UART.
|
|
*
|
|
* Function sets given buffer as first buffer for receiving and returns
|
|
* immediately. After that event handler, set using @ref uart_callback_set,
|
|
* is called with UART_RX_RDY or UART_RX_BUF_REQUEST events.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param buf Pointer to receive buffer.
|
|
* @param len Buffer length.
|
|
* @param timeout Timeout in milliseconds.
|
|
*
|
|
* @retval -EBUSY RX already in progress.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*
|
|
*/
|
|
static inline int uart_rx_enable(struct device *dev, u8_t *buf, size_t len,
|
|
u32_t timeout)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->rx_enable(dev, buf, len, timeout);
|
|
}
|
|
|
|
/**
|
|
* @brief Provide receive buffer in response to UART_RX_BUF_REQUEST event.
|
|
*
|
|
* Provide pointer to RX buffer, which will be used when current buffer is
|
|
* filled.
|
|
*
|
|
* @note Providing buffer that is already in usage by driver leads to
|
|
* undefined behavior. Buffer can be reused when it has been released
|
|
* by driver.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param buf Pointer to receive buffer.
|
|
* @param len Buffer length.
|
|
*
|
|
* @retval -EBUSY Next buffer already set.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*
|
|
*/
|
|
static inline int uart_rx_buf_rsp(struct device *dev, u8_t *buf, size_t len)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->rx_buf_rsp(dev, buf, len);
|
|
}
|
|
|
|
/**
|
|
* @brief Disable RX
|
|
*
|
|
* UART_RX_BUF_RELEASED event will be generated for every buffer scheduled,
|
|
* after that UART_RX_DISABLED event will be generated.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval -EFAULT There is no active reception.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
static inline int uart_rx_disable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->rx_disable(dev);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* @brief Check whether an error was detected.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval uart_rx_stop_reason If error during receiving occurred.
|
|
* @retval 0 Otherwise.
|
|
*/
|
|
__syscall int uart_err_check(struct device *dev);
|
|
|
|
static inline int z_impl_uart_err_check(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->err_check != NULL) {
|
|
return api->err_check(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Poll the device for input.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param p_char Pointer to character.
|
|
*
|
|
* @retval 0 If a character arrived.
|
|
* @retval -1 If no character was available to read (i.e., the UART
|
|
* input buffer was empty).
|
|
* @retval -ENOTSUP If the operation is not supported.
|
|
* @retval -EBUSY If reception was enabled using uart_rx_enabled
|
|
*/
|
|
__syscall int uart_poll_in(struct device *dev, unsigned char *p_char);
|
|
|
|
static inline int z_impl_uart_poll_in(struct device *dev, unsigned char *p_char)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
return api->poll_in(dev, p_char);
|
|
}
|
|
|
|
/**
|
|
* @brief Output a character in polled mode.
|
|
*
|
|
* This routine checks if the transmitter is empty.
|
|
* When the transmitter is empty, it writes a character to the data
|
|
* register.
|
|
*
|
|
* To send a character when hardware flow control is enabled, the handshake
|
|
* signal CTS must be asserted.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param out_char Character to send.
|
|
*/
|
|
__syscall void uart_poll_out(struct device *dev,
|
|
unsigned char out_char);
|
|
|
|
static inline void z_impl_uart_poll_out(struct device *dev,
|
|
unsigned char out_char)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
api->poll_out(dev, out_char);
|
|
}
|
|
|
|
/**
|
|
* @brief Set UART configuration.
|
|
*
|
|
* Sets UART configuration using data from *cfg.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param cfg UART configuration structure.
|
|
*
|
|
*
|
|
* @retval -ENOTSUP If configuration is not supported by device.
|
|
* or driver does not support setting configuration in runtime.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
__syscall int uart_configure(struct device *dev, const struct uart_config *cfg);
|
|
|
|
static inline int z_impl_uart_configure(struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->configure != NULL) {
|
|
return api->configure(dev, cfg);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/**
|
|
* @brief Get UART configuration.
|
|
*
|
|
* Stores current UART configuration to *cfg, can be used to retrieve initial
|
|
* configuration after device was initialized using data from DTS.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param cfg UART configuration structure.
|
|
*
|
|
* @retval -ENOTSUP If driver does not support getting current configuration.
|
|
* @retval 0 If successful, negative errno code otherwise.
|
|
*/
|
|
__syscall int uart_config_get(struct device *dev, struct uart_config *cfg);
|
|
|
|
static inline int z_impl_uart_config_get(struct device *dev,
|
|
struct uart_config *cfg)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->config_get != NULL) {
|
|
return api->config_get(dev, cfg);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
/**
|
|
* @brief Fill FIFO with data.
|
|
*
|
|
* @details This function is expected to be called from UART
|
|
* interrupt handler (ISR), if uart_irq_tx_ready() returns true.
|
|
* Result of calling this function not from an ISR is undefined
|
|
* (hardware-dependent). Likewise, *not* calling this function
|
|
* from an ISR if uart_irq_tx_ready() returns true may lead to
|
|
* undefined behavior, e.g. infinite interrupt loops. It's
|
|
* mandatory to test return value of this function, as different
|
|
* hardware has different FIFO depth (oftentimes just 1).
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param tx_data Data to transmit.
|
|
* @param size Number of bytes to send.
|
|
*
|
|
* @return Number of bytes sent.
|
|
*/
|
|
static inline int uart_fifo_fill(struct device *dev, const u8_t *tx_data,
|
|
int size)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->fifo_fill) {
|
|
return api->fifo_fill(dev, tx_data, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Read data from FIFO.
|
|
*
|
|
* @details This function is expected to be called from UART
|
|
* interrupt handler (ISR), if uart_irq_rx_ready() returns true.
|
|
* Result of calling this function not from an ISR is undefined
|
|
* (hardware-dependent). It's unspecified whether "RX ready"
|
|
* condition as returned by uart_irq_rx_ready() is level- or
|
|
* edge- triggered. That means that once uart_irq_rx_ready() is
|
|
* detected, uart_fifo_read() must be called until it reads all
|
|
* available data in the FIFO (i.e. until it returns less data
|
|
* than was requested).
|
|
*
|
|
* Note that the calling context only applies to physical UARTs and
|
|
* no to the virtual ones found in USB CDC ACM code.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param rx_data Data container.
|
|
* @param size Container size.
|
|
*
|
|
* @return Number of bytes read.
|
|
*/
|
|
static inline int uart_fifo_read(struct device *dev, u8_t *rx_data,
|
|
const int size)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->fifo_read) {
|
|
return api->fifo_read(dev, rx_data, size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable TX interrupt in IER.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
__syscall void uart_irq_tx_enable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_tx_enable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_tx_enable) {
|
|
api->irq_tx_enable(dev);
|
|
}
|
|
}
|
|
/**
|
|
* @brief Disable TX interrupt in IER.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
__syscall void uart_irq_tx_disable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_tx_disable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_tx_disable) {
|
|
api->irq_tx_disable(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Check if UART TX buffer can accept a new char
|
|
*
|
|
* @details Check if UART TX buffer can accept at least one character
|
|
* for transmission (i.e. uart_fifo_fill() will succeed and return
|
|
* non-zero). This function must be called in a UART interrupt
|
|
* handler, or its result is undefined. Before calling this function
|
|
* in the interrupt handler, uart_irq_update() must be called once per
|
|
* the handler invocation.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 If at least one char can be written to UART.
|
|
* @retval 0 Otherwise.
|
|
*/
|
|
static inline int uart_irq_tx_ready(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_tx_ready) {
|
|
return api->irq_tx_ready(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable RX interrupt.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
__syscall void uart_irq_rx_enable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_rx_enable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_rx_enable) {
|
|
api->irq_rx_enable(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Disable RX interrupt.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
__syscall void uart_irq_rx_disable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_rx_disable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_rx_disable) {
|
|
api->irq_rx_disable(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Check if UART TX block finished transmission
|
|
*
|
|
* @details Check if any outgoing data buffered in UART TX block was
|
|
* fully transmitted and TX block is idle. When this condition is
|
|
* true, UART device (or whole system) can be power off. Note that
|
|
* this function is *not* useful to check if UART TX can accept more
|
|
* data, use uart_irq_tx_ready() for that. This function must be called
|
|
* in a UART interrupt handler, or its result is undefined. Before
|
|
* calling this function in the interrupt handler, uart_irq_update()
|
|
* must be called once per the handler invocation.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 If nothing remains to be transmitted.
|
|
* @retval 0 Otherwise.
|
|
* @retval -ENOTSUP if this function is not supported
|
|
*/
|
|
static inline int uart_irq_tx_complete(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_tx_complete) {
|
|
return api->irq_tx_complete(dev);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/**
|
|
* @brief Check if UART RX buffer has a received char
|
|
*
|
|
* @details Check if UART RX buffer has at least one pending character
|
|
* (i.e. uart_fifo_read() will succeed and return non-zero). This function
|
|
* must be called in a UART interrupt handler, or its result is undefined.
|
|
* Before calling this function in the interrupt handler, uart_irq_update()
|
|
* must be called once per the handler invocation. It's unspecified whether
|
|
* condition as returned by this function is level- or edge- triggered (i.e.
|
|
* if this function returns true when RX FIFO is non-empty, or when a new
|
|
* char was received since last call to it). See description of
|
|
* uart_fifo_read() for implication of this.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 If a received char is ready.
|
|
* @retval 0 Otherwise.
|
|
* @retval -ENOTSUP if this function is not supported
|
|
*/
|
|
static inline int uart_irq_rx_ready(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_rx_ready) {
|
|
return api->irq_rx_ready(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/**
|
|
* @brief Enable error interrupt.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
__syscall void uart_irq_err_enable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_err_enable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_err_enable) {
|
|
api->irq_err_enable(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Disable error interrupt.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 If an IRQ is ready.
|
|
* @retval 0 Otherwise.
|
|
*/
|
|
__syscall void uart_irq_err_disable(struct device *dev);
|
|
|
|
static inline void z_impl_uart_irq_err_disable(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_err_disable) {
|
|
api->irq_err_disable(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Check if any IRQs is pending.
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 If an IRQ is pending.
|
|
* @retval 0 Otherwise.
|
|
*/
|
|
__syscall int uart_irq_is_pending(struct device *dev);
|
|
|
|
static inline int z_impl_uart_irq_is_pending(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_is_pending) {
|
|
return api->irq_is_pending(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Start processing interrupts in ISR.
|
|
*
|
|
* This function should be called the first thing in the ISR. Calling
|
|
* uart_irq_rx_ready(), uart_irq_tx_ready(), uart_irq_tx_complete()
|
|
* allowed only after this.
|
|
*
|
|
* The purpose of this function is:
|
|
*
|
|
* * For devices with auto-acknowledge of interrupt status on register
|
|
* read to cache the value of this register (rx_ready, etc. then use
|
|
* this case).
|
|
* * For devices with explicit acknowledgement of interrupts, to ack
|
|
* any pending interrupts and likewise to cache the original value.
|
|
* * For devices with implicit acknowledgement, this function will be
|
|
* empty. But the ISR must perform the actions needs to ack the
|
|
* interrupts (usually, call uart_fifo_read() on rx_ready, and
|
|
* uart_fifo_fill() on tx_ready).
|
|
*
|
|
* @param dev UART device structure.
|
|
*
|
|
* @retval 1 Always.
|
|
*/
|
|
__syscall int uart_irq_update(struct device *dev);
|
|
|
|
static inline int z_impl_uart_irq_update(struct device *dev)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->irq_update) {
|
|
return api->irq_update(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Set the IRQ callback function pointer.
|
|
*
|
|
* This sets up the callback for IRQ. When an IRQ is triggered,
|
|
* the specified function will be called with specified user data.
|
|
* See description of uart_irq_update() for the requirements on ISR.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param cb Pointer to the callback function.
|
|
* @param user_data Data to pass to callback function.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static inline void uart_irq_callback_user_data_set(
|
|
struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *user_data)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if ((api != NULL) && (api->irq_callback_set != NULL)) {
|
|
api->irq_callback_set(dev, cb, user_data);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Set the IRQ callback function pointer (legacy).
|
|
*
|
|
* This sets up the callback for IRQ. When an IRQ is triggered,
|
|
* the specified function will be called with the device pointer.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param cb Pointer to the callback function.
|
|
*
|
|
* @return N/A
|
|
*/
|
|
static inline void uart_irq_callback_set(struct device *dev,
|
|
uart_irq_callback_t cb)
|
|
{
|
|
uart_irq_callback_user_data_set(dev, (uart_irq_callback_user_data_t)cb,
|
|
dev);
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_LINE_CTRL
|
|
|
|
/**
|
|
* @brief Manipulate line control for UART.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param ctrl The line control to manipulate.
|
|
* @param val Value to set to the line control.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval failed Otherwise.
|
|
*/
|
|
__syscall int uart_line_ctrl_set(struct device *dev,
|
|
u32_t ctrl, u32_t val);
|
|
|
|
static inline int z_impl_uart_line_ctrl_set(struct device *dev,
|
|
u32_t ctrl, u32_t val)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->line_ctrl_set) {
|
|
return api->line_ctrl_set(dev, ctrl, val);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/**
|
|
* @brief Retrieve line control for UART.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param ctrl The line control to manipulate.
|
|
* @param val Value to get for the line control.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval failed Otherwise.
|
|
*/
|
|
__syscall int uart_line_ctrl_get(struct device *dev, u32_t ctrl, u32_t *val);
|
|
|
|
static inline int z_impl_uart_line_ctrl_get(struct device *dev,
|
|
u32_t ctrl, u32_t *val)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api && api->line_ctrl_get) {
|
|
return api->line_ctrl_get(dev, ctrl, val);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_LINE_CTRL */
|
|
|
|
#ifdef CONFIG_UART_DRV_CMD
|
|
|
|
/**
|
|
* @brief Send extra command to driver.
|
|
*
|
|
* Implementation and accepted commands are driver specific.
|
|
* Refer to the drivers for more information.
|
|
*
|
|
* @param dev UART device structure.
|
|
* @param cmd Command to driver.
|
|
* @param p Parameter to the command.
|
|
*
|
|
* @retval 0 If successful.
|
|
* @retval failed Otherwise.
|
|
*/
|
|
__syscall int uart_drv_cmd(struct device *dev, u32_t cmd, u32_t p);
|
|
|
|
static inline int z_impl_uart_drv_cmd(struct device *dev, u32_t cmd, u32_t p)
|
|
{
|
|
const struct uart_driver_api *api =
|
|
(const struct uart_driver_api *)dev->driver_api;
|
|
|
|
if (api->drv_cmd) {
|
|
return api->drv_cmd(dev, cmd, p);
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
#endif /* CONFIG_UART_DRV_CMD */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
#include <syscalls/uart.h>
|
|
|
|
#endif /* ZEPHYR_INCLUDE_UART_H_ */
|