zephyr/drivers/sensor/mpu9250/ak8963.c

402 lines
9.3 KiB
C

/*
* Copyright (c) 2021, Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/sensor.h>
#include <zephyr/logging/log.h>
#include "mpu9250.h"
#include "ak8963.h"
LOG_MODULE_DECLARE(MPU9250, CONFIG_SENSOR_LOG_LEVEL);
#define I2C_READ_FLAG BIT(7)
#define AK8963_I2C_ADDR 0x0C
#define AK8963_REG_ID 0x00
#define AK8963_REG_ID_VAL 0x48
#define AK8963_REG_DATA 0x03
#define AK8963_ST2_OVRFL_BIT BIT(3)
#define AK8963_REG_CNTL1 0x0A
#define AK8963_REG_CNTL1_POWERDOWN_VAL 0x00
#define AK8963_REG_CNTL1_FUSE_ROM_VAL 0x0F
#define AK8963_REG_CNTL1_16BIT_100HZ_VAL 0x16
#define AK8963_SET_MODE_DELAY_MS 1
#define AK8963_REG_CNTL2 0x0B
#define AK8963_REG_CNTL2_RESET_VAL 0x01
#define AK8963_RESET_DELAY_MS 1
#define AK8963_REG_ADJ_DATA_X 0x10
#define AK8963_REG_ADJ_DATA_Y 0x11
#define AK8963_REG_ADJ_DATA_Z 0x12
#define AK9863_SCALE_TO_UG 1499
#define MPU9250_REG_I2C_MST_CTRL 0x24
#define MPU9250_REG_I2C_MST_CTRL_WAIT_MAG_400KHZ_VAL 0x4D
#define MPU9250_REG_I2C_SLV0_ADDR 0x25
#define MPU9250_REG_I2C_SLV0_REG 0x26
#define MPU9250_REG_I2C_SLV0_CTRL 0x27
#define MPU9250_REG_I2C_SLV0_DATA0 0x63
#define MPU9250_REG_READOUT_CTRL_VAL (BIT(7) | 0x07)
#define MPU9250_REG_USER_CTRL 0x6A
#define MPU9250_REG_USER_CTRL_I2C_MASTERMODE_VAL 0x20
#define MPU9250_REG_EXT_DATA00 0x49
#define MPU9250_REG_I2C_SLV4_ADDR 0x31
#define MPU9250_REG_I2C_SLV4_REG 0x32
#define MPU9250_REG_I2C_SLV4_DO 0x33
#define MPU9250_REG_I2C_SLV4_CTRL 0x34
#define MPU9250_REG_I2C_SLV4_CTRL_VAL 0x80
#define MPU9250_REG_I2C_SLV4_DI 0x35
#define MPU9250_I2C_MST_STS 0x36
#define MPU9250_I2C_MST_STS_SLV4_DONE BIT(6)
int ak8963_convert_magn(struct sensor_value *val, int16_t raw_val,
int16_t scale, uint8_t st2)
{
/* The sensor device returns 10^-9 Teslas after scaling.
* Scale adjusts for calibration data and units
* So sensor instance returns Gauss units
*/
/* If overflow happens then value is invalid */
if ((st2 & AK8963_ST2_OVRFL_BIT) != 0) {
LOG_INF("Magnetometer value overflow.");
return -EOVERFLOW;
}
int32_t scaled_val = (int32_t)raw_val * (int32_t)scale;
val->val1 = scaled_val / 1000000;
val->val2 = scaled_val % 1000000;
return 0;
}
static int ak8963_execute_rw(const struct device *dev, uint8_t reg, bool write)
{
/* Instruct the MPU9250 to access over its external i2c bus
* given device register with given details
*/
const struct mpu9250_config *cfg = dev->config;
uint8_t mode_bit = 0x00;
uint8_t status;
int ret;
if (!write) {
mode_bit = I2C_READ_FLAG;
}
/* Set target i2c address */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV4_ADDR,
AK8963_I2C_ADDR | mode_bit);
if (ret < 0) {
LOG_ERR("Failed to write i2c target slave address.");
return ret;
}
/* Set target i2c register */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV4_REG,
reg);
if (ret < 0) {
LOG_ERR("Failed to write i2c target slave register.");
return ret;
}
/* Initiate transfer */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV4_CTRL,
MPU9250_REG_I2C_SLV4_CTRL_VAL);
if (ret < 0) {
LOG_ERR("Failed to initiate i2c slave transfer.");
return ret;
}
/* Wait for a transfer to be ready */
do {
ret = i2c_reg_read_byte_dt(&cfg->i2c,
MPU9250_I2C_MST_STS, &status);
if (ret < 0) {
LOG_ERR("Waiting for slave failed.");
return ret;
}
} while (!(status & MPU9250_I2C_MST_STS_SLV4_DONE));
return 0;
}
static int ak8963_read_reg(const struct device *dev, uint8_t reg, uint8_t *data)
{
const struct mpu9250_config *cfg = dev->config;
int ret;
/* Execute transfer */
ret = ak8963_execute_rw(dev, reg, false);
if (ret < 0) {
LOG_ERR("Failed to prepare transfer.");
return ret;
}
/* Read the result */
ret = i2c_reg_read_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV4_DI, data);
if (ret < 0) {
LOG_ERR("Failed to read data from slave.");
return ret;
}
return 0;
}
static int ak8963_write_reg(const struct device *dev, uint8_t reg, uint8_t data)
{
const struct mpu9250_config *cfg = dev->config;
int ret;
/* Set the data to write */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV4_DO, data);
if (ret < 0) {
LOG_ERR("Failed to write data to slave.");
return ret;
}
/* Execute transfer */
ret = ak8963_execute_rw(dev, reg, true);
if (ret < 0) {
LOG_ERR("Failed to transfer write to slave.");
return ret;
}
return 0;
}
static int ak8963_set_mode(const struct device *dev, uint8_t mode)
{
int ret;
ret = ak8963_write_reg(dev, AK8963_REG_CNTL1, mode);
if (ret < 0) {
LOG_ERR("Failed to set AK8963 mode.");
return ret;
}
/* Wait for mode to change */
k_msleep(AK8963_SET_MODE_DELAY_MS);
return 0;
}
static int16_t ak8963_calc_adj(int16_t val)
{
/** Datasheet says the actual register value is in 16bit output max
* value of 32760 that corresponds to 4912 uT flux, yielding factor
* of 0.149938.
*
* Now Zephyr unit is Gauss, and conversion is 1T = 10^4G
* -> 0.1499 * 10^4 = 1499
* So if we multiply with scaling with 1499 the unit is uG.
*
* Calculation from MPU-9250 Register Map and Descriptions
* adj = (((val-128)*0.5)/128)+1
*/
return ((AK9863_SCALE_TO_UG * (val - 128)) / 256) + AK9863_SCALE_TO_UG;
}
static int ak8963_fetch_adj(const struct device *dev)
{
/* Read magnetometer adjustment data from the AK8963 chip */
struct mpu9250_data *drv_data = dev->data;
uint8_t buf;
int ret;
/* Change to FUSE access mode to access adjustment registers */
ret = ak8963_set_mode(dev, AK8963_REG_CNTL1_FUSE_ROM_VAL);
if (ret < 0) {
LOG_ERR("Failed to set chip in fuse access mode.");
return ret;
}
ret = ak8963_read_reg(dev, AK8963_REG_ADJ_DATA_X, &buf);
if (ret < 0) {
LOG_ERR("Failed to read adjustment data.");
return ret;
}
drv_data->magn_scale_x = ak8963_calc_adj(buf);
ret = ak8963_read_reg(dev, AK8963_REG_ADJ_DATA_Y, &buf);
if (ret < 0) {
LOG_ERR("Failed to read adjustment data.");
return ret;
}
drv_data->magn_scale_y = ak8963_calc_adj(buf);
ret = ak8963_read_reg(dev, AK8963_REG_ADJ_DATA_Z, &buf);
if (ret < 0) {
LOG_ERR("Failed to read adjustment data.");
return ret;
}
drv_data->magn_scale_z = ak8963_calc_adj(buf);
/* Change back to the powerdown mode */
ret = ak8963_set_mode(dev, AK8963_REG_CNTL1_POWERDOWN_VAL);
if (ret < 0) {
LOG_ERR("Failed to set chip in power down mode.");
return ret;
}
LOG_DBG("Adjustment values %d %d %d", drv_data->magn_scale_x,
drv_data->magn_scale_y, drv_data->magn_scale_z);
return 0;
}
static int ak8963_reset(const struct device *dev)
{
int ret;
/* Reset the chip -> reset all settings. */
ret = ak8963_write_reg(dev, AK8963_REG_CNTL2,
AK8963_REG_CNTL2_RESET_VAL);
if (ret < 0) {
LOG_ERR("Failed to reset AK8963.");
return ret;
}
/* Wait for reset */
k_msleep(AK8963_RESET_DELAY_MS);
return 0;
}
static int ak8963_init_master(const struct device *dev)
{
const struct mpu9250_config *cfg = dev->config;
int ret;
/* Instruct MPU9250 to use its external I2C bus as master */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_USER_CTRL,
MPU9250_REG_USER_CTRL_I2C_MASTERMODE_VAL);
if (ret < 0) {
LOG_ERR("Failed to set MPU9250 master i2c mode.");
return ret;
}
/* Set MPU9250 I2C bus as 400kHz and issue interrupt at data ready. */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_MST_CTRL,
MPU9250_REG_I2C_MST_CTRL_WAIT_MAG_400KHZ_VAL);
if (ret < 0) {
LOG_ERR("Failed to set MPU9250 master i2c speed.");
return ret;
}
return 0;
}
static int ak8963_init_readout(const struct device *dev)
{
const struct mpu9250_config *cfg = dev->config;
int ret;
/* Set target i2c address */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV0_ADDR,
AK8963_I2C_ADDR | I2C_READ_FLAG);
if (ret < 0) {
LOG_ERR("Failed to set AK8963 slave address.");
return ret;
}
/* Set target as data registers */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV0_REG, AK8963_REG_DATA);
if (ret < 0) {
LOG_ERR("Failed to set AK8963 register address.");
return ret;
}
/* Initiate readout at sample rate */
ret = i2c_reg_write_byte_dt(&cfg->i2c,
MPU9250_REG_I2C_SLV0_CTRL,
MPU9250_REG_READOUT_CTRL_VAL);
if (ret < 0) {
LOG_ERR("Failed to init AK8963 value readout.");
return ret;
}
return 0;
}
int ak8963_init(const struct device *dev)
{
uint8_t buf;
int ret;
ret = ak8963_init_master(dev);
if (ret < 0) {
LOG_ERR("Initializing MPU9250 master mode failed.");
return ret;
}
ret = ak8963_reset(dev);
if (ret < 0) {
LOG_ERR("Resetting AK8963 failed.");
return ret;
}
/* First check that the chip says hello */
ret = ak8963_read_reg(dev, AK8963_REG_ID, &buf);
if (ret < 0) {
LOG_ERR("Failed to read AK8963 chip id.");
return ret;
}
if (buf != AK8963_REG_ID_VAL) {
LOG_ERR("Invalid AK8963 chip id (0x%X).", buf);
return -ENOTSUP;
}
/* Fetch calibration data */
ret = ak8963_fetch_adj(dev);
if (ret < 0) {
LOG_ERR("Calibrating AK8963 failed.");
return ret;
}
/* Set AK sample rate and resolution */
ret = ak8963_set_mode(dev, AK8963_REG_CNTL1_16BIT_100HZ_VAL);
if (ret < 0) {
LOG_ERR("Failed set sample rate for AK8963.");
return ret;
}
/* Init constant readouts at sample rate */
ret = ak8963_init_readout(dev);
if (ret < 0) {
LOG_ERR("Initializing AK8963 readout failed.");
return ret;
}
return 0;
}