zephyr/drivers/timer/hpet.c

475 lines
12 KiB
C

/*
* Copyright (c) 2018-2021 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT intel_hpet
#include <zephyr/device.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/irq.h>
#include <zephyr/linker/sections.h>
#include <zephyr/dt-bindings/interrupt-controller/intel-ioapic.h>
#include <soc.h>
/**
* @file
* @brief HPET (High Precision Event Timers) driver
*
* HPET hardware contains a number of timers which can be used by
* the operating system, where the number of timers is implementation
* specific. The timers are implemented as a single up-counter with
* a set of comparators where the counter increases monotonically.
* Each timer has a match register and a comparator, and can generate
* an interrupt when the value in the match register equals the value of
* the free running counter. Some of these timers can be enabled to
* generate periodic interrupt.
*
* The HPET registers are usually mapped to memory space on x86
* hardware. If this is not the case, custom register access functions
* can be used by defining macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS in
* soc.h, and implementing necessary initialization and access
* functions as described below.
*
* HPET_COUNTER_CLK_PERIOD can be overridden in soc.h if
* COUNTER_CLK_PERIOD is not in femtoseconds (1e-15 sec).
*
* HPET_CMP_MIN_DELAY can be overridden in soc.h to better match
* the frequency of the timers. Default is 1000 where the value
* written to the comparator must be 1000 larger than the current
* main counter value.
*/
/* General Configuration register */
#define GCONF_ENABLE BIT(0)
#define GCONF_LR BIT(1) /* legacy interrupt routing, */
/* disables PIT */
/* General Interrupt Status register */
#define TIMER0_INT_STS BIT(0)
/* Timer Configuration and Capabilities register */
#define TIMER_CONF_INT_LEVEL BIT(1)
#define TIMER_CONF_INT_ENABLE BIT(2)
#define TIMER_CONF_PERIODIC BIT(3)
#define TIMER_CONF_VAL_SET BIT(6)
#define TIMER_CONF_MODE32 BIT(8)
#define TIMER_CONF_FSB_EN BIT(14) /* FSB interrupt delivery */
/* enable */
DEVICE_MMIO_TOPLEVEL_STATIC(hpet_regs, DT_DRV_INST(0));
#define HPET_REG_ADDR(off) \
((mm_reg_t)(DEVICE_MMIO_TOPLEVEL_GET(hpet_regs) + (off)))
/* High dword of General Capabilities and ID register */
#define CLK_PERIOD_REG HPET_REG_ADDR(0x04)
/* General Configuration register */
#define GCONF_REG HPET_REG_ADDR(0x10)
/* General Interrupt Status register */
#define INTR_STATUS_REG HPET_REG_ADDR(0x20)
/* Main Counter Register */
#define MAIN_COUNTER_LOW_REG HPET_REG_ADDR(0xf0)
#define MAIN_COUNTER_HIGH_REG HPET_REG_ADDR(0xf4)
/* Timer 0 Configuration and Capabilities register */
#define TIMER0_CONF_REG HPET_REG_ADDR(0x100)
/* Timer 0 Comparator Register */
#define TIMER0_COMPARATOR_LOW_REG HPET_REG_ADDR(0x108)
#define TIMER0_COMPARATOR_HIGH_REG HPET_REG_ADDR(0x10c)
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = DT_IRQN(DT_INST(0, intel_hpet));
#endif
/**
* @brief Return the value of the main counter.
*
* @return Value of Main Counter
*/
static inline uint64_t hpet_counter_get(void)
{
#ifdef CONFIG_64BIT
uint64_t val = sys_read64(MAIN_COUNTER_LOW_REG);
return val;
#else
uint32_t high;
uint32_t low;
do {
high = sys_read32(MAIN_COUNTER_HIGH_REG);
low = sys_read32(MAIN_COUNTER_LOW_REG);
} while (high != sys_read32(MAIN_COUNTER_HIGH_REG));
return ((uint64_t)high << 32) | low;
#endif
}
/**
* @brief Get COUNTER_CLK_PERIOD
*
* Read and return the COUNTER_CLK_PERIOD, which is the high
* 32-bit of the General Capabilities and ID Register. This can
* be used to calculate the frequency of the main counter.
*
* Usually the period is in femtoseconds. If this is not
* the case, define HPET_COUNTER_CLK_PERIOD in soc.h so
* it can be used to calculate frequency.
*
* @return COUNTER_CLK_PERIOD
*/
static inline uint32_t hpet_counter_clk_period_get(void)
{
return sys_read32(CLK_PERIOD_REG);
}
/**
* @brief Return the value of the General Configuration Register
*
* @return Value of the General Configuration Register
*/
static inline uint32_t hpet_gconf_get(void)
{
return sys_read32(GCONF_REG);
}
/**
* @brief Write to General Configuration Register
*
* @param val Value to be written to the register
*/
static inline void hpet_gconf_set(uint32_t val)
{
sys_write32(val, GCONF_REG);
}
/**
* @brief Write to General Interrupt Status Register
*
* This is used to acknowledge and clear interrupt bits.
*
* @param val Value to be written to the register
*/
static inline void hpet_int_sts_set(uint32_t val)
{
sys_write32(val, INTR_STATUS_REG);
}
/**
* @brief Return the value of the Timer Configuration Register
*
* This reads and returns the value of the Timer Configuration
* Register of Timer #0.
*
* @return Value of the Timer Configuration Register
*/
static inline uint32_t hpet_timer_conf_get(void)
{
return sys_read32(TIMER0_CONF_REG);
}
/**
* @brief Write to the Timer Configuration Register
*
* This writes the specified value to the Timer Configuration
* Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_conf_set(uint32_t val)
{
sys_write32(val, TIMER0_CONF_REG);
}
/*
* The following register access functions should work on generic x86
* hardware. If the targeted SoC requires special handling of HPET
* registers, these functions will need to be implemented in the SoC
* layer by first defining the macro HPET_USE_CUSTOM_REG_ACCESS_FUNCS
* in soc.h to signal such intent.
*
* This is a list of functions which must be implemented in the SoC
* layer:
* void hpet_timer_comparator_set(uint32_t val)
*/
#ifndef HPET_USE_CUSTOM_REG_ACCESS_FUNCS
/**
* @brief Write to the Timer Comparator Value Register
*
* This writes the specified value to the Timer Comparator
* Value Register of Timer #0.
*
* @param val Value to be written to the register
*/
static inline void hpet_timer_comparator_set(uint64_t val)
{
#if CONFIG_X86_64
sys_write64(val, TIMER0_COMPARATOR_LOW_REG);
#else
sys_write32((uint32_t)val, TIMER0_COMPARATOR_LOW_REG);
sys_write32((uint32_t)(val >> 32), TIMER0_COMPARATOR_HIGH_REG);
#endif
}
#endif /* HPET_USE_CUSTOM_REG_ACCESS_FUNCS */
#ifndef HPET_COUNTER_CLK_PERIOD
/* COUNTER_CLK_PERIOD (CLK_PERIOD_REG) is in femtoseconds (1e-15 sec) */
#define HPET_COUNTER_CLK_PERIOD (1000000000000000ULL)
#endif
#ifndef HPET_CMP_MIN_DELAY
/* Minimal delay for comparator before the next timer event */
#define HPET_CMP_MIN_DELAY (1000)
#endif
/*
* HPET_INT_LEVEL_TRIGGER is used to set HPET interrupt as level trigger
* for ARM CPU with NVIC like EHL PSE, whose DTS interrupt setting
* has no "sense" cell.
*/
#if (DT_INST_IRQ_HAS_CELL(0, sense))
#ifdef HPET_INT_LEVEL_TRIGGER
__WARN("HPET_INT_LEVEL_TRIGGER has no effect, DTS setting is used instead")
#undef HPET_INT_LEVEL_TRIGGER
#endif
#if ((DT_INST_IRQ(0, sense) & IRQ_TYPE_LEVEL) == IRQ_TYPE_LEVEL)
#define HPET_INT_LEVEL_TRIGGER
#endif
#endif /* (DT_INST_IRQ_HAS_CELL(0, sense)) */
static __pinned_bss struct k_spinlock lock;
static __pinned_bss uint64_t last_count;
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
static __pinned_bss unsigned int cyc_per_tick;
#else
#define cyc_per_tick \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */
#define HPET_MAX_TICKS ((int32_t)0x7fffffff)
__isr
static void hpet_isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
#ifdef HPET_INT_LEVEL_TRIGGER
/*
* Clear interrupt only if level trigger is selected.
* When edge trigger is selected, spec says only 0 can
* be written.
*/
hpet_int_sts_set(TIMER0_INT_STS);
#endif
if (IS_ENABLED(CONFIG_SMP) &&
IS_ENABLED(CONFIG_QEMU_TARGET)) {
/* Qemu in SMP mode has observed the clock going
* "backwards" relative to interrupts already received
* on the other CPU, despite the HPET being
* theoretically a global device.
*/
int64_t diff = (int64_t)(now - last_count);
if (last_count && diff < 0) {
now = last_count;
}
}
uint32_t dticks = (uint32_t)((now - last_count) / cyc_per_tick);
last_count += (uint64_t)dticks * cyc_per_tick;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
uint64_t next = last_count + cyc_per_tick;
if ((int64_t)(next - now) < HPET_CMP_MIN_DELAY) {
next = now + HPET_CMP_MIN_DELAY;
}
hpet_timer_comparator_set(next);
}
k_spin_unlock(&lock, key);
sys_clock_announce(dticks);
}
__pinned_func
static void config_timer0(unsigned int irq)
{
uint32_t val = hpet_timer_conf_get();
/* 5-bit IRQ field starting at bit 9 */
val = (val & ~(0x1f << 9)) | ((irq & 0x1f) << 9);
#ifdef HPET_INT_LEVEL_TRIGGER
/* Set level trigger if selected */
val |= TIMER_CONF_INT_LEVEL;
#endif
val &= ~((uint32_t)(TIMER_CONF_MODE32 | TIMER_CONF_PERIODIC |
TIMER_CONF_FSB_EN));
val |= TIMER_CONF_INT_ENABLE;
hpet_timer_conf_set(val);
}
__boot_func
void smp_timer_init(void)
{
/* Noop, the HPET is a single system-wide device and it's
* configured to deliver interrupts to every CPU, so there's
* nothing to do at initialization on auxiliary CPUs.
*/
}
__pinned_func
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
#if defined(CONFIG_TICKLESS_KERNEL)
uint32_t reg;
if (ticks == K_TICKS_FOREVER && idle) {
reg = hpet_gconf_get();
reg &= ~GCONF_ENABLE;
hpet_gconf_set(reg);
return;
}
ticks = ticks == K_TICKS_FOREVER ? HPET_MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, HPET_MAX_TICKS);
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get(), cyc, adj;
uint64_t max_cyc = (uint64_t)HPET_MAX_TICKS * cyc_per_tick;
/* Round up to next tick boundary. */
cyc = (uint64_t)ticks * cyc_per_tick;
adj = (now - last_count) + (cyc_per_tick - 1);
if (cyc <= max_cyc - adj) {
cyc += adj;
} else {
cyc = max_cyc;
}
cyc = (cyc / cyc_per_tick) * cyc_per_tick;
cyc += last_count;
if ((int64_t)(cyc - now) < HPET_CMP_MIN_DELAY) {
cyc = now + HPET_CMP_MIN_DELAY;
}
hpet_timer_comparator_set(cyc);
k_spin_unlock(&lock, key);
#endif
}
__pinned_func
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t now = hpet_counter_get();
uint32_t ret = (uint32_t)((now - last_count) / cyc_per_tick);
k_spin_unlock(&lock, key);
return ret;
}
__pinned_func
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)hpet_counter_get();
}
__pinned_func
uint64_t sys_clock_cycle_get_64(void)
{
return hpet_counter_get();
}
__pinned_func
void sys_clock_idle_exit(void)
{
uint32_t reg;
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
hpet_gconf_set(reg);
}
__boot_func
static int sys_clock_driver_init(const struct device *dev)
{
extern int z_clock_hw_cycles_per_sec;
uint32_t hz, reg;
ARG_UNUSED(dev);
ARG_UNUSED(hz);
ARG_UNUSED(z_clock_hw_cycles_per_sec);
DEVICE_MMIO_TOPLEVEL_MAP(hpet_regs, K_MEM_CACHE_NONE);
#if DT_INST_IRQ_HAS_CELL(0, sense)
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, DT_INST_IRQ(0, sense));
#else
IRQ_CONNECT(DT_INST_IRQN(0),
DT_INST_IRQ(0, priority),
hpet_isr, 0, 0);
#endif
config_timer0(DT_INST_IRQN(0));
irq_enable(DT_INST_IRQN(0));
#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
hz = (uint32_t)(HPET_COUNTER_CLK_PERIOD / hpet_counter_clk_period_get());
z_clock_hw_cycles_per_sec = hz;
cyc_per_tick = hz / CONFIG_SYS_CLOCK_TICKS_PER_SEC;
#endif
reg = hpet_gconf_get();
reg |= GCONF_ENABLE;
#if (DT_INST_PROP(0, no_legacy_irq) == 0)
/* Note: we set the legacy routing bit, because otherwise
* nothing in Zephyr disables the PIT which then fires
* interrupts into the same IRQ. But that means we're then
* forced to use IRQ2 contra the way the kconfig IRQ selection
* is supposed to work. Should fix this.
*/
reg |= GCONF_LR;
#endif
hpet_gconf_set(reg);
last_count = hpet_counter_get();
if (cyc_per_tick >= HPET_CMP_MIN_DELAY) {
hpet_timer_comparator_set(last_count + cyc_per_tick);
} else {
hpet_timer_comparator_set(last_count + HPET_CMP_MIN_DELAY);
}
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);