zephyr/arch/arm/core/aarch32/prep_c.c

271 lines
7.8 KiB
C

/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Full C support initialization
*
*
* Initialization of full C support: zero the .bss, copy the .data if XIP,
* call z_cstart().
*
* Stack is available in this module, but not the global data/bss until their
* initialization is performed.
*/
#include <zephyr/kernel.h>
#include <kernel_internal.h>
#include <zephyr/linker/linker-defs.h>
#if !defined(CONFIG_CPU_CORTEX_M)
#include <zephyr/arch/arm/aarch32/cortex_a_r/lib_helpers.h>
#endif
#if defined(CONFIG_ARMV7_R) || defined(CONFIG_ARMV7_A)
#include <aarch32/cortex_a_r/stack.h>
#endif
#if defined(__GNUC__)
/*
* GCC can detect if memcpy is passed a NULL argument, however one of
* the cases of relocate_vector_table() it is valid to pass NULL, so we
* suppress the warning for this case. We need to do this before
* string.h is included to get the declaration of memcpy.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnonnull"
#endif
#include <string.h>
#if defined(CONFIG_SW_VECTOR_RELAY) || defined(CONFIG_SW_VECTOR_RELAY_CLIENT)
Z_GENERIC_SECTION(.vt_pointer_section) __attribute__((used))
void *_vector_table_pointer;
#endif
#ifdef CONFIG_CPU_CORTEX_M_HAS_VTOR
#define VECTOR_ADDRESS ((uintptr_t)_vector_start)
static inline void relocate_vector_table(void)
{
SCB->VTOR = VECTOR_ADDRESS & SCB_VTOR_TBLOFF_Msk;
__DSB();
__ISB();
}
#elif defined(CONFIG_AARCH32_ARMV8_R)
#define VECTOR_ADDRESS ((uintptr_t)_vector_start)
static inline void relocate_vector_table(void)
{
write_sctlr(read_sctlr() & ~HIVECS);
write_vbar(VECTOR_ADDRESS & VBAR_MASK);
__ISB();
}
#else
#define VECTOR_ADDRESS 0
void __weak relocate_vector_table(void)
{
#if defined(CONFIG_XIP) && (CONFIG_FLASH_BASE_ADDRESS != 0) || \
!defined(CONFIG_XIP) && (CONFIG_SRAM_BASE_ADDRESS != 0)
#if !defined(CONFIG_CPU_CORTEX_M)
write_sctlr(read_sctlr() & ~HIVECS);
#endif
size_t vector_size = (size_t)_vector_end - (size_t)_vector_start;
(void)memcpy(VECTOR_ADDRESS, _vector_start, vector_size);
#elif defined(CONFIG_SW_VECTOR_RELAY) || defined(CONFIG_SW_VECTOR_RELAY_CLIENT)
_vector_table_pointer = _vector_start;
#endif
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#endif /* CONFIG_CPU_CORTEX_M_HAS_VTOR */
#if defined(CONFIG_CPU_HAS_FPU)
#if defined(CONFIG_CPU_CORTEX_M)
static inline void z_arm_floating_point_init(void)
{
/*
* Upon reset, the Co-Processor Access Control Register is, normally,
* 0x00000000. However, it might be left un-cleared by firmware running
* before Zephyr boot.
*/
SCB->CPACR &= (~(CPACR_CP10_Msk | CPACR_CP11_Msk));
#if defined(CONFIG_FPU)
/*
* Enable CP10 and CP11 Co-Processors to enable access to floating
* point registers.
*/
#if defined(CONFIG_USERSPACE)
/* Full access */
SCB->CPACR |= CPACR_CP10_FULL_ACCESS | CPACR_CP11_FULL_ACCESS;
#else
/* Privileged access only */
SCB->CPACR |= CPACR_CP10_PRIV_ACCESS | CPACR_CP11_PRIV_ACCESS;
#endif /* CONFIG_USERSPACE */
/*
* Upon reset, the FPU Context Control Register is 0xC0000000
* (both Automatic and Lazy state preservation is enabled).
*/
#if defined(CONFIG_MULTITHREADING) && !defined(CONFIG_FPU_SHARING)
/* Unshared FP registers (multithreading) mode. We disable the
* automatic stacking of FP registers (automatic setting of
* FPCA bit in the CONTROL register), upon exception entries,
* as the FP registers are to be used by a single context (and
* the use of FP registers in ISRs is not supported). This
* configuration improves interrupt latency and decreases the
* stack memory requirement for the (single) thread that makes
* use of the FP co-processor.
*/
FPU->FPCCR &= (~(FPU_FPCCR_ASPEN_Msk | FPU_FPCCR_LSPEN_Msk));
#else
/*
* FP register sharing (multithreading) mode or single-threading mode.
*
* Enable both automatic and lazy state preservation of the FP context.
* The FPCA bit of the CONTROL register will be automatically set, if
* the thread uses the floating point registers. Because of lazy state
* preservation the volatile FP registers will not be stacked upon
* exception entry, however, the required area in the stack frame will
* be reserved for them. This configuration improves interrupt latency.
* The registers will eventually be stacked when the thread is swapped
* out during context-switch or if an ISR attempts to execute floating
* point instructions.
*/
FPU->FPCCR = FPU_FPCCR_ASPEN_Msk | FPU_FPCCR_LSPEN_Msk;
#endif /* CONFIG_FPU_SHARING */
/* Make the side-effects of modifying the FPCCR be realized
* immediately.
*/
__DSB();
__ISB();
/* Initialize the Floating Point Status and Control Register. */
#if defined(CONFIG_ARMV8_1_M_MAINLINE)
/*
* For ARMv8.1-M with FPU, the FPSCR[18:16] LTPSIZE field must be set
* to 0b100 for "Tail predication not applied" as it's reset value
*/
__set_FPSCR(4 << FPU_FPDSCR_LTPSIZE_Pos);
#else
__set_FPSCR(0);
#endif
/*
* Note:
* The use of the FP register bank is enabled, however the FP context
* will be activated (FPCA bit on the CONTROL register) in the presence
* of floating point instructions.
*/
#endif /* CONFIG_FPU */
/*
* Upon reset, the CONTROL.FPCA bit is, normally, cleared. However,
* it might be left un-cleared by firmware running before Zephyr boot.
* We must clear this bit to prevent errors in exception unstacking.
*
* Note:
* In Sharing FP Registers mode CONTROL.FPCA is cleared before switching
* to main, so it may be skipped here (saving few boot cycles).
*
* If CONFIG_INIT_ARCH_HW_AT_BOOT is set, CONTROL is cleared at reset.
*/
#if (!defined(CONFIG_FPU) || !defined(CONFIG_FPU_SHARING)) && \
(!defined(CONFIG_INIT_ARCH_HW_AT_BOOT))
__set_CONTROL(__get_CONTROL() & (~(CONTROL_FPCA_Msk)));
#endif
}
#else
static inline void z_arm_floating_point_init(void)
{
#if defined(CONFIG_FPU)
uint32_t reg_val = 0;
/*
* CPACR : Coprocessor Access Control Register -> CP15 1/0/2
* comp. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition,
* chap. B4.1.40
*
* Must be accessed in >= PL1!
* [23..22] = CP11 access control bits,
* [21..20] = CP10 access control bits.
* 11b = Full access as defined for the respective CP,
* 10b = UNDEFINED,
* 01b = Access at PL1 only,
* 00b = No access.
*/
reg_val = __get_CPACR();
/* Enable PL1 access to CP10, CP11 */
reg_val |= (CPACR_CP10(CPACR_FA) | CPACR_CP11(CPACR_FA));
__set_CPACR(reg_val);
__ISB();
#if !defined(CONFIG_FPU_SHARING)
/*
* FPEXC: Floating-Point Exception Control register
* comp. ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition,
* chap. B6.1.38
*
* Must be accessed in >= PL1!
* [31] EX bit = determines which registers comprise the current state
* of the FPU. The effects of setting this bit to 1 are
* subarchitecture defined. If EX=0, the following
* registers contain the complete current state
* information of the FPU and must therefore be saved
* during a context switch:
* * D0-D15
* * D16-D31 if implemented
* * FPSCR
* * FPEXC.
* [30] EN bit = Advanced SIMD/Floating Point Extensions enable bit.
* [29..00] = Subarchitecture defined -> not relevant here.
*/
__set_FPEXC(FPEXC_EN);
#endif
#endif
}
#endif /* CONFIG_CPU_CORTEX_M */
#endif /* CONFIG_CPU_HAS_FPU */
extern FUNC_NORETURN void z_cstart(void);
/**
*
* @brief Prepare to and run C code
*
* This routine prepares for the execution of and runs C code.
*
*/
void z_arm_prep_c(void)
{
relocate_vector_table();
#if defined(CONFIG_CPU_HAS_FPU)
z_arm_floating_point_init();
#endif
z_bss_zero();
z_data_copy();
#if ((defined(CONFIG_ARMV7_R) || defined(CONFIG_ARMV7_A)) && defined(CONFIG_INIT_STACKS))
z_arm_init_stacks();
#endif
z_arm_interrupt_init();
z_cstart();
CODE_UNREACHABLE;
}