zephyr/net/bluetooth/conn.c

1215 lines
26 KiB
C

/* conn.c - Bluetooth connection handling */
/*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <toolchain.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <atomic.h>
#include <misc/byteorder.h>
#include <misc/util.h>
#include <bluetooth/log.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/conn.h>
#include <bluetooth/driver.h>
#include "hci_core.h"
#include "conn_internal.h"
#include "l2cap_internal.h"
#include "keys.h"
#include "smp.h"
#include "att.h"
#if !defined(CONFIG_BLUETOOTH_DEBUG_CONN)
#undef BT_DBG
#define BT_DBG(fmt, ...)
#endif
/* Pool for outgoing ACL fragments */
static struct nano_fifo frag_buf;
static NET_BUF_POOL(frag_pool, 1, BT_L2CAP_BUF_SIZE(23), &frag_buf, NULL, 0);
/* Pool for dummy buffers to wake up the tx fibers */
static struct nano_fifo dummy;
static NET_BUF_POOL(dummy_pool, CONFIG_BLUETOOTH_MAX_CONN, 0, &dummy, NULL, 0);
/* How long until we cancel HCI_LE_Create_Connection */
#define CONN_TIMEOUT (3 * sys_clock_ticks_per_sec)
#if defined(CONFIG_BLUETOOTH_SMP) || defined(CONFIG_BLUETOOTH_BREDR)
const struct bt_conn_auth_cb *bt_auth;
#endif /* CONFIG_BLUETOOTH_SMP || CONFIG_BLUETOOTH_BREDR */
static struct bt_conn conns[CONFIG_BLUETOOTH_MAX_CONN];
static struct bt_conn_cb *callback_list;
#if defined(CONFIG_BLUETOOTH_DEBUG_CONN)
static const char *state2str(bt_conn_state_t state)
{
switch (state) {
case BT_CONN_DISCONNECTED:
return "disconnected";
case BT_CONN_CONNECT_SCAN:
return "connect-scan";
case BT_CONN_CONNECT:
return "connect";
case BT_CONN_CONNECTED:
return "connected";
case BT_CONN_DISCONNECT:
return "disconnect";
default:
return "(unknown)";
}
}
#endif
static void notify_connected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->connected) {
cb->connected(conn, conn->err);
}
}
}
static void notify_disconnected(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->disconnected) {
cb->disconnected(conn, conn->err);
}
}
}
#if defined(CONFIG_BLUETOOTH_SMP)
uint8_t bt_conn_enc_key_size(struct bt_conn *conn)
{
return conn->keys ? conn->keys->enc_size : 0;
}
void bt_conn_identity_resolved(struct bt_conn *conn)
{
const bt_addr_le_t *rpa;
struct bt_conn_cb *cb;
if (conn->role == BT_HCI_ROLE_MASTER) {
rpa = &conn->le.resp_addr;
} else {
rpa = &conn->le.init_addr;
}
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->identity_resolved) {
cb->identity_resolved(conn, rpa, &conn->le.dst);
}
}
}
void bt_conn_security_changed(struct bt_conn *conn)
{
struct bt_conn_cb *cb;
for (cb = callback_list; cb; cb = cb->_next) {
if (cb->security_changed) {
cb->security_changed(conn, conn->sec_level);
}
}
}
int bt_conn_le_start_encryption(struct bt_conn *conn, uint64_t rand,
uint16_t ediv, const uint8_t *ltk, size_t len)
{
struct bt_hci_cp_le_start_encryption *cp;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_START_ENCRYPTION, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
cp->handle = sys_cpu_to_le16(conn->handle);
cp->rand = rand;
cp->ediv = ediv;
memcpy(cp->ltk, ltk, len);
if (len < sizeof(cp->ltk)) {
memset(cp->ltk + len, 0, sizeof(cp->ltk) - len);
}
return bt_hci_cmd_send_sync(BT_HCI_OP_LE_START_ENCRYPTION, buf, NULL);
}
static int start_security(struct bt_conn *conn)
{
switch (conn->role) {
#if defined(CONFIG_BLUETOOTH_CENTRAL)
case BT_HCI_ROLE_MASTER:
{
if (!conn->keys) {
conn->keys = bt_keys_find(BT_KEYS_LTK_P256,
&conn->le.dst);
if (!conn->keys) {
conn->keys = bt_keys_find(BT_KEYS_LTK,
&conn->le.dst);
}
}
if (!conn->keys ||
!(conn->keys->keys & (BT_KEYS_LTK | BT_KEYS_LTK_P256))) {
return bt_smp_send_pairing_req(conn);
}
if (conn->required_sec_level > BT_SECURITY_MEDIUM &&
!atomic_test_bit(&conn->keys->flags,
BT_KEYS_AUTHENTICATED)) {
return bt_smp_send_pairing_req(conn);
}
if (conn->required_sec_level > BT_SECURITY_HIGH &&
!atomic_test_bit(&conn->keys->flags,
BT_KEYS_AUTHENTICATED) &&
!(conn->keys->keys & BT_KEYS_LTK_P256)) {
return bt_smp_send_pairing_req(conn);
}
/* LE SC LTK and legacy master LTK are stored in same place */
return bt_conn_le_start_encryption(conn, conn->keys->ltk.rand,
conn->keys->ltk.ediv,
conn->keys->ltk.val,
conn->keys->enc_size);
}
#endif /* CONFIG_BLUETOOTH_CENTRAL */
#if defined(CONFIG_BLUETOOTH_PERIPHERAL)
case BT_HCI_ROLE_SLAVE:
return bt_smp_send_security_req(conn);
#endif /* CONFIG_BLUETOOTH_PERIPHERAL */
default:
return -EINVAL;
}
}
int bt_conn_security(struct bt_conn *conn, bt_security_t sec)
{
int err;
if (conn->state != BT_CONN_CONNECTED) {
return -ENOTCONN;
}
#if defined(CONFIG_BLUETOOTH_SMP_SC_ONLY)
if (sec < BT_SECURITY_FIPS) {
return -EOPNOTSUPP;
}
#endif/* CONFIG_BLUETOOTH_SMP_SC_ONLY */
/* nothing to do */
if (conn->sec_level >= sec || conn->required_sec_level >= sec) {
return 0;
}
conn->required_sec_level = sec;
err = start_security(conn);
/* reset required security level in case of error */
if (err) {
conn->required_sec_level = conn->sec_level;
}
return err;
}
#endif /* CONFIG_BLUETOOTH_SMP */
void bt_conn_cb_register(struct bt_conn_cb *cb)
{
cb->_next = callback_list;
callback_list = cb;
}
static void bt_conn_reset_rx_state(struct bt_conn *conn)
{
if (!conn->rx_len) {
return;
}
net_buf_unref(conn->rx);
conn->rx = NULL;
conn->rx_len = 0;
}
void bt_conn_recv(struct bt_conn *conn, struct net_buf *buf, uint8_t flags)
{
struct bt_l2cap_hdr *hdr;
uint16_t len;
BT_DBG("handle %u len %u flags %02x", conn->handle, buf->len, flags);
/* Check packet boundary flags */
switch (flags) {
case BT_ACL_START:
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
BT_DBG("First, len %u final %u", buf->len, len);
if (conn->rx_len) {
BT_ERR("Unexpected first L2CAP frame");
bt_conn_reset_rx_state(conn);
}
conn->rx_len = (sizeof(*hdr) + len) - buf->len;
BT_DBG("rx_len %u", conn->rx_len);
if (conn->rx_len) {
conn->rx = buf;
return;
}
break;
case BT_ACL_CONT:
if (!conn->rx_len) {
BT_ERR("Unexpected L2CAP continuation");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
if (buf->len > conn->rx_len) {
BT_ERR("L2CAP data overflow");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
BT_DBG("Cont, len %u rx_len %u", buf->len, conn->rx_len);
if (buf->len > net_buf_tailroom(conn->rx)) {
BT_ERR("Not enough buffer space for L2CAP data");
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
memcpy(net_buf_add(conn->rx, buf->len), buf->data, buf->len);
conn->rx_len -= buf->len;
net_buf_unref(buf);
if (conn->rx_len) {
return;
}
buf = conn->rx;
conn->rx = NULL;
conn->rx_len = 0;
break;
default:
BT_ERR("Unexpected ACL flags (0x%02x)", flags);
bt_conn_reset_rx_state(conn);
net_buf_unref(buf);
return;
}
hdr = (void *)buf->data;
len = sys_le16_to_cpu(hdr->len);
if (sizeof(*hdr) + len != buf->len) {
BT_ERR("ACL len mismatch (%u != %u)", len, buf->len);
net_buf_unref(buf);
return;
}
BT_DBG("Successfully parsed %u byte L2CAP packet", buf->len);
bt_l2cap_recv(conn, buf);
}
void bt_conn_send(struct bt_conn *conn, struct net_buf *buf)
{
BT_DBG("conn handle %u buf len %u", conn->handle, buf->len);
if (conn->state != BT_CONN_CONNECTED) {
BT_ERR("not connected!");
net_buf_unref(buf);
return;
}
nano_fifo_put(&conn->tx_queue, buf);
}
static bool send_frag(struct bt_conn *conn, struct net_buf *buf, uint8_t flags,
bool always_consume)
{
struct bt_hci_acl_hdr *hdr;
int err;
BT_DBG("conn %p buf %p len %u flags 0x%02x", conn, buf, buf->len,
flags);
/* Wait until the controller can accept ACL packets */
nano_fiber_sem_take(bt_conn_get_pkts(conn), TICKS_UNLIMITED);
/* Check for disconnection while waiting for pkts_sem */
if (conn->state != BT_CONN_CONNECTED) {
goto fail;
}
hdr = net_buf_push(buf, sizeof(*hdr));
hdr->handle = sys_cpu_to_le16(bt_acl_handle_pack(conn->handle, flags));
hdr->len = sys_cpu_to_le16(buf->len - sizeof(*hdr));
BT_DBG("passing buf %p len %u to driver", buf, buf->len);
err = bt_dev.drv->send(BT_ACL_OUT, buf);
if (err) {
BT_ERR("Unable to send to driver (err %d)", err);
goto fail;
}
conn->pending_pkts++;
return true;
fail:
nano_fiber_sem_give(bt_conn_get_pkts(conn));
if (always_consume) {
net_buf_unref(buf);
}
return false;
}
static inline uint16_t conn_mtu(struct bt_conn *conn)
{
#if defined(CONFIG_BLUETOOTH_BREDR)
if (conn->type == BT_CONN_TYPE_BR || !bt_dev.le.mtu) {
return bt_dev.br.mtu;
}
#endif /* CONFIG_BLUETOOTH_BREDR */
return bt_dev.le.mtu;
}
static struct net_buf *create_frag(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
uint16_t frag_len;
frag = bt_conn_create_pdu(&frag_buf, 0);
if (conn->state != BT_CONN_CONNECTED) {
net_buf_unref(frag);
return NULL;
}
frag_len = min(conn_mtu(conn), net_buf_tailroom(frag));
memcpy(net_buf_add(frag, frag_len), buf->data, frag_len);
net_buf_pull(buf, frag_len);
return frag;
}
static bool send_buf(struct bt_conn *conn, struct net_buf *buf)
{
struct net_buf *frag;
BT_DBG("conn %p buf %p len %u", conn, buf, buf->len);
/* Send directly if the packet fits the ACL MTU */
if (buf->len <= conn_mtu(conn)) {
return send_frag(conn, buf, BT_ACL_START_NO_FLUSH, false);
}
/* Create & enqueue first fragment */
frag = create_frag(conn, buf);
if (!frag) {
return false;
}
if (!send_frag(conn, frag, BT_ACL_START_NO_FLUSH, true)) {
return false;
}
/*
* Send the fragments. For the last one simply use the original
* buffer (which works since we've used net_buf_pull on it.
*/
while (buf->len > conn_mtu(conn)) {
frag = create_frag(conn, buf);
if (!frag) {
return false;
}
if (!send_frag(conn, frag, BT_ACL_CONT, true)) {
return false;
}
}
return send_frag(conn, buf, BT_ACL_CONT, false);
}
static void conn_tx_fiber(int arg1, int arg2)
{
struct bt_conn *conn = (struct bt_conn *)arg1;
struct net_buf *buf;
BT_DBG("Started for handle %u", conn->handle);
while (conn->state == BT_CONN_CONNECTED) {
/* Get next ACL packet for connection */
buf = nano_fifo_get(&conn->tx_queue, TICKS_UNLIMITED);
if (conn->state != BT_CONN_CONNECTED) {
net_buf_unref(buf);
break;
}
if (!send_buf(conn, buf)) {
net_buf_unref(buf);
}
}
BT_DBG("handle %u disconnected - cleaning up", conn->handle);
/* Give back any allocated buffers */
while ((buf = nano_fifo_get(&conn->tx_queue, TICKS_NONE))) {
net_buf_unref(buf);
}
/* Return any unacknowledged packets */
if (conn->pending_pkts) {
while (conn->pending_pkts--) {
nano_fiber_sem_give(bt_conn_get_pkts(conn));
}
}
bt_conn_reset_rx_state(conn);
BT_DBG("handle %u exiting", conn->handle);
bt_conn_unref(conn);
}
static struct bt_conn *conn_new(void)
{
struct bt_conn *conn = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
conn = &conns[i];
break;
}
}
if (!conn) {
return NULL;
}
memset(conn, 0, sizeof(*conn));
atomic_set(&conn->ref, 1);
return conn;
}
struct bt_conn *bt_conn_add_le(const bt_addr_le_t *peer)
{
struct bt_conn *conn = conn_new();
if (!conn) {
return NULL;
}
bt_addr_le_copy(&conn->le.dst, peer);
#if defined(CONFIG_BLUETOOTH_SMP)
conn->sec_level = BT_SECURITY_LOW;
conn->required_sec_level = BT_SECURITY_LOW;
#endif /* CONFIG_BLUETOOTH_SMP */
conn->type = BT_CONN_TYPE_LE;
conn->le.interval_min = BT_GAP_INIT_CONN_INT_MIN;
conn->le.interval_max = BT_GAP_INIT_CONN_INT_MAX;
return conn;
}
#if defined(CONFIG_BLUETOOTH_BREDR)
struct bt_conn *bt_conn_lookup_addr_br(const bt_addr_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_BR) {
continue;
}
if (!bt_addr_cmp(peer, &conns[i].br.dst)) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_add_br(const bt_addr_t *peer)
{
struct bt_conn *conn = conn_new();
if (!conn) {
return NULL;
}
bt_addr_copy(&conn->br.dst, peer);
conn->type = BT_CONN_TYPE_BR;
return conn;
}
#endif
static void timeout_fiber(int arg1, int arg2)
{
struct bt_conn *conn = (struct bt_conn *)arg1;
ARG_UNUSED(arg2);
conn->timeout = NULL;
bt_conn_disconnect(conn, BT_HCI_ERR_REMOTE_USER_TERM_CONN);
bt_conn_unref(conn);
}
void bt_conn_set_state(struct bt_conn *conn, bt_conn_state_t state)
{
bt_conn_state_t old_state;
BT_DBG("%s -> %s", state2str(conn->state), state2str(state));
if (conn->state == state) {
BT_WARN("no transition");
return;
}
old_state = conn->state;
conn->state = state;
/* Actions needed for exiting the old state */
switch (old_state) {
case BT_CONN_DISCONNECTED:
/* Take a reference for the first state transition after
* bt_conn_add_le() and keep it until reaching DISCONNECTED
* again.
*/
bt_conn_ref(conn);
break;
case BT_CONN_CONNECT:
if (conn->timeout) {
fiber_delayed_start_cancel(conn->timeout);
conn->timeout = NULL;
/* Drop the reference taken by timeout fiber */
bt_conn_unref(conn);
}
break;
default:
break;
}
/* Actions needed for entering the new state */
switch (conn->state){
case BT_CONN_CONNECTED:
nano_fifo_init(&conn->tx_queue);
fiber_start(conn->stack, sizeof(conn->stack), conn_tx_fiber,
(int)bt_conn_ref(conn), 0, 7, 0);
bt_l2cap_connected(conn);
notify_connected(conn);
break;
case BT_CONN_DISCONNECTED:
/* Notify disconnection and queue a dummy buffer to wake
* up and stop the tx fiber for states where it was
* running.
*/
if (old_state == BT_CONN_CONNECTED ||
old_state == BT_CONN_DISCONNECT) {
bt_l2cap_disconnected(conn);
notify_disconnected(conn);
nano_fifo_put(&conn->tx_queue, net_buf_get(&dummy, 0));
} else if (old_state == BT_CONN_CONNECT) {
/* conn->err will be set in this case */
notify_connected(conn);
}
/* Release the reference we took for the very first
* state transition.
*/
bt_conn_unref(conn);
break;
case BT_CONN_CONNECT_SCAN:
break;
case BT_CONN_CONNECT:
/*
* Timer is needed only for LE. For other link types controller
* will handle connection timeout.
*/
if (conn->type != BT_CONN_TYPE_LE) {
break;
}
/* Add LE Create Connection timeout */
conn->timeout = fiber_delayed_start(conn->stack,
sizeof(conn->stack),
timeout_fiber,
(int)bt_conn_ref(conn),
0, 7, 0, CONN_TIMEOUT);
break;
case BT_CONN_DISCONNECT:
break;
default:
BT_WARN("no valid (%u) state was set", state);
break;
}
}
struct bt_conn *bt_conn_lookup_handle(uint16_t handle)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
/* We only care about connections with a valid handle */
if (conns[i].state != BT_CONN_CONNECTED &&
conns[i].state != BT_CONN_DISCONNECT) {
continue;
}
if (conns[i].handle == handle) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_addr_le(const bt_addr_le_t *peer)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_LE) {
continue;
}
if (!bt_addr_le_cmp(peer, &conns[i].le.dst)) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_lookup_state_le(const bt_addr_le_t *peer,
const bt_conn_state_t state)
{
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
if (!atomic_get(&conns[i].ref)) {
continue;
}
if (conns[i].type != BT_CONN_TYPE_LE) {
continue;
}
if (bt_addr_le_cmp(peer, BT_ADDR_LE_ANY) &&
bt_addr_le_cmp(peer, &conns[i].le.dst)) {
continue;
}
if (conns[i].state == state) {
return bt_conn_ref(&conns[i]);
}
}
return NULL;
}
struct bt_conn *bt_conn_ref(struct bt_conn *conn)
{
atomic_inc(&conn->ref);
BT_DBG("handle %u ref %u", conn->handle, atomic_get(&conn->ref));
return conn;
}
void bt_conn_unref(struct bt_conn *conn)
{
atomic_dec(&conn->ref);
BT_DBG("handle %u ref %u", conn->handle, atomic_get(&conn->ref));
}
const bt_addr_le_t *bt_conn_get_dst(const struct bt_conn *conn)
{
return &conn->le.dst;
}
int bt_conn_get_info(const struct bt_conn *conn, struct bt_conn_info *info)
{
info->type = conn->type;
switch (conn->type) {
case BT_CONN_TYPE_LE:
if (conn->role == BT_HCI_ROLE_MASTER) {
info->le.src = &conn->le.init_addr;
info->le.dst = &conn->le.resp_addr;
} else {
info->le.src = &conn->le.resp_addr;
info->le.dst = &conn->le.init_addr;
}
return 0;
#if defined(CONFIG_BLUETOOTH_BREDR)
case BT_CONN_TYPE_BR:
info->br.dst = &conn->br.dst;
return 0;
#endif
}
return -EINVAL;
}
static int bt_hci_disconnect(struct bt_conn *conn, uint8_t reason)
{
struct net_buf *buf;
struct bt_hci_cp_disconnect *disconn;
int err;
buf = bt_hci_cmd_create(BT_HCI_OP_DISCONNECT, sizeof(*disconn));
if (!buf) {
return -ENOBUFS;
}
disconn = net_buf_add(buf, sizeof(*disconn));
disconn->handle = sys_cpu_to_le16(conn->handle);
disconn->reason = reason;
err = bt_hci_cmd_send(BT_HCI_OP_DISCONNECT, buf);
if (err) {
return err;
}
bt_conn_set_state(conn, BT_CONN_DISCONNECT);
return 0;
}
static int bt_hci_connect_le_cancel(struct bt_conn *conn)
{
int err;
if (conn->timeout) {
fiber_delayed_start_cancel(conn->timeout);
conn->timeout = NULL;
/* Drop the reference took by timeout fiber */
bt_conn_unref(conn);
}
err = bt_hci_cmd_send(BT_HCI_OP_LE_CREATE_CONN_CANCEL, NULL);
if (err) {
return err;
}
return 0;
}
int bt_conn_disconnect(struct bt_conn *conn, uint8_t reason)
{
#if defined(CONFIG_BLUETOOTH_CENTRAL)
/* Disconnection is initiated by us, so auto connection shall
* be disabled. Otherwise the passive scan would be enabled
* and we could send LE Create Connection as soon as the remote
* starts advertising.
*/
if (conn->type == BT_CONN_TYPE_LE) {
bt_le_set_auto_conn(&conn->le.dst, NULL);
}
#endif
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
bt_le_scan_update(false);
return 0;
case BT_CONN_CONNECT:
return bt_hci_connect_le_cancel(conn);
case BT_CONN_CONNECTED:
return bt_hci_disconnect(conn, reason);
case BT_CONN_DISCONNECT:
return 0;
case BT_CONN_DISCONNECTED:
default:
return -ENOTCONN;
}
}
#if defined(CONFIG_BLUETOOTH_CENTRAL)
struct bt_conn *bt_conn_create_le(const bt_addr_le_t *peer,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
if (!bt_le_conn_params_valid(param->interval_min, param->interval_max,
param->latency, param->timeout)) {
return NULL;
}
if (atomic_test_bit(bt_dev.flags, BT_DEV_EXPLICIT_SCAN)) {
return NULL;
}
conn = bt_conn_lookup_addr_le(peer);
if (conn) {
switch (conn->state) {
case BT_CONN_CONNECT_SCAN:
bt_conn_set_param_le(conn, param);
return conn;
case BT_CONN_CONNECT:
case BT_CONN_CONNECTED:
return conn;
default:
bt_conn_unref(conn);
return NULL;
}
}
conn = bt_conn_add_le(peer);
if (!conn) {
return NULL;
}
bt_conn_set_param_le(conn, param);
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
bt_le_scan_update(true);
return conn;
}
int bt_le_set_auto_conn(bt_addr_le_t *addr,
const struct bt_le_conn_param *param)
{
struct bt_conn *conn;
if (param && !bt_le_conn_params_valid(param->interval_min,
param->interval_max,
param->latency,
param->timeout)) {
return -EINVAL;
}
conn = bt_conn_lookup_addr_le(addr);
if (!conn) {
conn = bt_conn_add_le(addr);
if (!conn) {
return -ENOMEM;
}
}
if (param) {
bt_conn_set_param_le(conn, param);
if (!atomic_test_and_set_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_ref(conn);
}
} else {
if (atomic_test_and_clear_bit(conn->flags,
BT_CONN_AUTO_CONNECT)) {
bt_conn_unref(conn);
if (conn->state == BT_CONN_CONNECT_SCAN) {
bt_conn_set_state(conn, BT_CONN_DISCONNECTED);
}
}
}
if (conn->state == BT_CONN_DISCONNECTED &&
atomic_test_bit(bt_dev.flags, BT_DEV_READY)) {
if (param) {
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
}
bt_le_scan_update(false);
}
bt_conn_unref(conn);
return 0;
}
#endif /* CONFIG_BLUETOOTH_CENTRAL */
#if defined(CONFIG_BLUETOOTH_PERIPHERAL)
struct bt_conn *bt_conn_create_slave_le(const bt_addr_le_t *peer,
const struct bt_le_adv_param *param)
{
return NULL;
}
#endif /* CONFIG_BLUETOOTH_PERIPHERAL */
int bt_conn_le_conn_update(struct bt_conn *conn, uint16_t min, uint16_t max,
uint16_t latency, uint16_t timeout)
{
struct hci_cp_le_conn_update *conn_update;
struct net_buf *buf;
buf = bt_hci_cmd_create(BT_HCI_OP_LE_CONN_UPDATE,
sizeof(*conn_update));
if (!buf) {
return -ENOBUFS;
}
conn_update = net_buf_add(buf, sizeof(*conn_update));
memset(conn_update, 0, sizeof(*conn_update));
conn_update->handle = sys_cpu_to_le16(conn->handle);
conn_update->conn_interval_min = sys_cpu_to_le16(min);
conn_update->conn_interval_max = sys_cpu_to_le16(max);
conn_update->conn_latency = sys_cpu_to_le16(latency);
conn_update->supervision_timeout = sys_cpu_to_le16(timeout);
return bt_hci_cmd_send(BT_HCI_OP_LE_CONN_UPDATE, buf);
}
struct net_buf *bt_conn_create_pdu(struct nano_fifo *fifo, size_t reserve)
{
size_t head_reserve = reserve + sizeof(struct bt_hci_acl_hdr) +
CONFIG_BLUETOOTH_HCI_SEND_RESERVE;
return net_buf_get(fifo, head_reserve);
}
#if defined(CONFIG_BLUETOOTH_SMP) || defined(CONFIG_BLUETOOTH_BREDR)
int bt_conn_auth_cb_register(const struct bt_conn_auth_cb *cb)
{
if (!cb) {
bt_auth = NULL;
return 0;
}
/* cancel callback should always be provided */
if (!cb->cancel) {
return -EINVAL;
}
if (bt_auth) {
return -EALREADY;
}
bt_auth = cb;
return 0;
}
#if defined(CONFIG_BLUETOOTH_BREDR)
static int pin_code_neg_reply(const bt_addr_t *bdaddr)
{
struct bt_hci_cp_pin_code_neg_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_PIN_CODE_NEG_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, bdaddr);
return bt_hci_cmd_send_sync(BT_HCI_OP_PIN_CODE_NEG_REPLY, buf, NULL);
}
static int pin_code_reply(struct bt_conn *conn, const char *pin, uint8_t len)
{
struct bt_hci_cp_pin_code_reply *cp;
struct net_buf *buf;
BT_DBG("");
buf = bt_hci_cmd_create(BT_HCI_OP_PIN_CODE_REPLY, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = net_buf_add(buf, sizeof(*cp));
bt_addr_copy(&cp->bdaddr, &conn->br.dst);
cp->pin_len = len;
strncpy(cp->pin_code, pin, sizeof(cp->pin_code));
return bt_hci_cmd_send_sync(BT_HCI_OP_PIN_CODE_REPLY, buf, NULL);
}
int bt_conn_auth_pincode_entry(struct bt_conn *conn, const char *pin)
{
size_t len;
if (!bt_auth) {
return -EINVAL;
}
if (conn->type != BT_CONN_TYPE_BR) {
return -EINVAL;
}
len = strlen(pin);
if (len > 16) {
return -EINVAL;
}
if (conn->required_sec_level == BT_SECURITY_HIGH && len < 16) {
BT_WARN("PIN code for %s is not 16 bytes wide",
bt_addr_str(&conn->br.dst));
return -EPERM;
}
return pin_code_reply(conn, pin, len);
}
void bt_conn_pin_code_req(struct bt_conn *conn)
{
if (bt_auth && bt_auth->pincode_entry) {
bool secure = false;
if (conn->required_sec_level == BT_SECURITY_HIGH) {
secure = true;
}
bt_auth->pincode_entry(conn, secure);
} else {
pin_code_neg_reply(&conn->br.dst);
}
}
#endif /* CONFIG_BLUETOOTH_BREDR */
int bt_conn_auth_passkey_entry(struct bt_conn *conn, unsigned int passkey)
{
if (!bt_auth) {
return -EINVAL;
}
#if defined(CONFIG_BLUETOOTH_SMP)
if (conn->type == BT_CONN_TYPE_LE) {
bt_smp_auth_passkey_entry(conn, passkey);
return 0;
}
#endif /* CONFIG_BLUETOOTH_SMP */
return -EINVAL;
}
int bt_conn_auth_passkey_confirm(struct bt_conn *conn, bool match)
{
if (!bt_auth) {
return -EINVAL;
};
#if defined(CONFIG_BLUETOOTH_SMP)
if (conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_passkey_confirm(conn, match);
}
#endif /* CONFIG_BLUETOOTH_SMP */
return -EINVAL;
}
int bt_conn_auth_cancel(struct bt_conn *conn)
{
if (!bt_auth) {
return -EINVAL;
}
#if defined(CONFIG_BLUETOOTH_SMP)
if (conn->type == BT_CONN_TYPE_LE) {
return bt_smp_auth_cancel(conn);
}
#endif /* CONFIG_BLUETOOTH_SMP */
#if defined(CONFIG_BLUETOOTH_BREDR)
if (conn->type == BT_CONN_TYPE_BR) {
return pin_code_neg_reply(&conn->br.dst);
}
#endif /* CONFIG_BLUETOOTH_BREDR */
return -EINVAL;
}
#endif /* CONFIG_BLUETOOTH_SMP || CONFIG_BLUETOOTH_BREDR */
static void background_scan_init(void)
{
#if defined(CONFIG_BLUETOOTH_CENTRAL)
int i;
for (i = 0; i < ARRAY_SIZE(conns); i++) {
struct bt_conn *conn = &conns[i];
if (!atomic_get(&conn->ref)) {
continue;
}
if (atomic_test_bit(conn->flags, BT_CONN_AUTO_CONNECT)) {
bt_conn_set_state(conn, BT_CONN_CONNECT_SCAN);
}
}
#endif /* CONFIG_BLUETOOTH_CENTRAL */
}
int bt_conn_init(void)
{
int err;
net_buf_pool_init(frag_pool);
net_buf_pool_init(dummy_pool);
bt_att_init();
err = bt_smp_init();
if (err) {
return err;
}
bt_l2cap_init();
background_scan_init();
return 0;
}