zephyr/kernel/mem_slab.c

162 lines
3.4 KiB
C

/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <debug/object_tracing_common.h>
#include <toolchain.h>
#include <linker/sections.h>
#include <wait_q.h>
#include <sys/dlist.h>
#include <ksched.h>
#include <init.h>
#include <sys/check.h>
static struct k_spinlock lock;
#ifdef CONFIG_OBJECT_TRACING
struct k_mem_slab *_trace_list_k_mem_slab;
#endif /* CONFIG_OBJECT_TRACING */
/**
* @brief Initialize kernel memory slab subsystem.
*
* Perform any initialization of memory slabs that wasn't done at build time.
* Currently this just involves creating the list of free blocks for each slab.
*
* @return N/A
*/
static int create_free_list(struct k_mem_slab *slab)
{
uint32_t j;
char *p;
/* blocks must be word aligned */
CHECKIF(((slab->block_size | (uintptr_t)slab->buffer) &
(sizeof(void *) - 1)) != 0U) {
return -EINVAL;
}
slab->free_list = NULL;
p = slab->buffer;
for (j = 0U; j < slab->num_blocks; j++) {
*(char **)p = slab->free_list;
slab->free_list = p;
p += slab->block_size;
}
return 0;
}
/**
* @brief Complete initialization of statically defined memory slabs.
*
* Perform any initialization that wasn't done at build time.
*
* @return N/A
*/
static int init_mem_slab_module(const struct device *dev)
{
int rc = 0;
ARG_UNUSED(dev);
Z_STRUCT_SECTION_FOREACH(k_mem_slab, slab) {
rc = create_free_list(slab);
if (rc < 0) {
goto out;
}
SYS_TRACING_OBJ_INIT(k_mem_slab, slab);
z_object_init(slab);
}
out:
return rc;
}
SYS_INIT(init_mem_slab_module, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
size_t block_size, uint32_t num_blocks)
{
int rc = 0;
slab->num_blocks = num_blocks;
slab->block_size = block_size;
slab->buffer = buffer;
slab->num_used = 0U;
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
slab->max_used = 0U;
#endif
rc = create_free_list(slab);
if (rc < 0) {
goto out;
}
z_waitq_init(&slab->wait_q);
SYS_TRACING_OBJ_INIT(k_mem_slab, slab);
z_object_init(slab);
out:
return rc;
}
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
{
k_spinlock_key_t key = k_spin_lock(&lock);
int result;
if (slab->free_list != NULL) {
/* take a free block */
*mem = slab->free_list;
slab->free_list = *(char **)(slab->free_list);
slab->num_used++;
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
slab->max_used = MAX(slab->num_used, slab->max_used);
#endif
result = 0;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) {
/* don't wait for a free block to become available */
*mem = NULL;
result = -ENOMEM;
} else {
/* wait for a free block or timeout */
result = z_pend_curr(&lock, key, &slab->wait_q, timeout);
if (result == 0) {
*mem = _current->base.swap_data;
}
return result;
}
k_spin_unlock(&lock, key);
return result;
}
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
{
k_spinlock_key_t key = k_spin_lock(&lock);
if (slab->free_list == NULL) {
struct k_thread *pending_thread = z_unpend_first_thread(&slab->wait_q);
if (pending_thread != NULL) {
z_thread_return_value_set_with_data(pending_thread, 0, *mem);
z_ready_thread(pending_thread);
z_reschedule(&lock, key);
return;
}
}
**(char ***) mem = slab->free_list;
slab->free_list = *(char **) mem;
slab->num_used--;
k_spin_unlock(&lock, key);
}