zephyr/kernel/microkernel/k_task.c

602 lines
14 KiB
C

/* task kernel services */
/*
* Copyright (c) 1997-2010, 2013-2015 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <microkernel.h>
#include <nanokernel.h>
#include <arch/cpu.h>
#include <string.h>
#include <toolchain.h>
#include <sections.h>
#include <micro_private.h>
#include <nano_private.h>
#include <start_task_arch.h>
/**
*
* @brief Get task identifer
*
* @return identifier for current task
*/
ktask_t task_id_get(void)
{
return _k_current_task->Ident;
}
/**
*
* @brief Reset the specified task state bits
*
* This routine resets the specified task state bits. When a task's state bits
* are zero, the task may be scheduled to run. The tasks's state bits are a
* bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why the task
* must not be scheduled to run.
*
* @return N/A
*/
void _k_state_bit_reset(struct k_proc *X, /* ptr to task */
uint32_t bits /* bitmask of TF_xxx
bits to reset */
)
{
uint32_t f_old = X->State; /* old state bits */
uint32_t f_new = f_old & ~bits; /* new state bits */
X->State = f_new; /* Update task's state bits */
if ((f_old != 0) && (f_new == 0)) {
/*
* The task may now be scheduled to run (but could not
* previously) as all the TF_xxx bits are clear. It must
* be added to the list of schedulable tasks.
*/
struct k_tqhd *H = _k_task_priority_list + X->Prio;
X->Forw = NULL;
H->Tail->Forw = X;
H->Tail = X;
_k_task_priority_bitmap[X->Prio >> 5] |= (1 << (X->Prio & 0x1F));
}
#ifdef CONFIG_TASK_MONITOR
f_new ^= f_old;
if ((_k_monitor_mask & MON_STATE) && (f_new)) {
/*
* Task monitoring is enabled and the new state bits are
* different than the old state bits.
*
* <f_new> now contains the bits that are different.
*/
_k_task_monitor(X, f_new | MO_STBIT0);
}
#endif
}
/**
*
* @brief Set specified task state bits
*
* This routine sets the specified task state bits. When a task's state bits
* are non-zero, the task will not be scheduled to run. The task's state bits
* are a bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why
* the task must not be scheduled to run.
*
* @return N/A
*/
void _k_state_bit_set(
struct k_proc *task_ptr,
uint32_t bits /* bitmask of TF_xxx bits to set */
)
{
uint32_t old_state_bits = task_ptr->State;
uint32_t new_state_bits = old_state_bits | bits;
task_ptr->State = new_state_bits;
if ((old_state_bits == 0) && (new_state_bits != 0)) {
/*
* The task could have been scheduled to run ([State] was 0)
* but can not be scheduled to run anymore at least one TF_xxx
* bit has been set. Remove it from the list of schedulable
* tasks.
*/
#if defined(__GNUC__)
#if defined(CONFIG_ARM)
/*
* Avoid bad code generation by certain gcc toolchains for ARM
* when an optimization setting of -O2 or above is used.
*
* Specifically, this issue has been seen with ARM gcc version
* 4.6.3 (Sourcery CodeBench Lite 2012.03-56): The 'volatile'
* attribute is added to the following variable to prevent it
* from being lost--otherwise the register that holds its value
* is reused, but the compiled code uses it later on as if it
* was still that variable.
*/
volatile
#endif
#endif
struct k_tqhd *task_queue = _k_task_priority_list + task_ptr->Prio;
struct k_proc *cur_task = (struct k_proc *)(&task_queue->Head);
/*
* Search in the list for this task priority level,
* and remove the task.
*/
while (cur_task->Forw != task_ptr) {
cur_task = cur_task->Forw;
}
cur_task->Forw = task_ptr->Forw;
if (task_queue->Tail == task_ptr) {
task_queue->Tail = cur_task;
}
/*
* If there are no more tasks of this priority that are
* runnable, then clear that bit in the global priority bit map.
*/
if (task_queue->Head == NULL) {
_k_task_priority_bitmap[task_ptr->Prio >> 5] &= ~(1 << (task_ptr->Prio & 0x1F));
}
}
#ifdef CONFIG_TASK_MONITOR
new_state_bits ^= old_state_bits;
if ((_k_monitor_mask & MON_STATE) && (new_state_bits)) {
/*
* Task monitoring is enabled and the new state bits are
* different than the old state bits.
*
* <new_state_bits> now contains the bits that are different.
*/
_k_task_monitor(task_ptr, new_state_bits | MO_STBIT1);
}
#endif
}
/**
*
* @brief Initialize and start a task
*
* @return N/A
*/
static void start_task(struct k_proc *X, /* ptr to task control block */
void (*func)(void) /* entry point for task */
)
{
unsigned int contextOptions;
/* Note: the field X->worksize now represents the task size in bytes */
contextOptions = 0;
_START_TASK_ARCH(X, &contextOptions);
/*
* The 'func' argument to _NewContext() represents the entry point of
* the
* kernel task. The 'parameter1', 'parameter2', & 'parameter3'
* arguments
* are not applicable to such tasks. A 'priority' of -1 indicates that
* the context is a task, rather than a fiber.
*/
_NewContext((char *)X->workspace, /* pStackMem */
X->worksize, /* stackSize */
(_ContextEntry)func, /* pEntry */
(void *)0, /* parameter1 */
(void *)0, /* parameter2 */
(void *)0, /* parameter3 */
-1, /* priority */
contextOptions /* options */
);
X->fabort = NULL;
_k_state_bit_reset(X, TF_STOP | TF_TERM);
}
/**
*
* @brief Abort a task
*
* This routine aborts the specified task.
*
* @return N/A
*/
static void abort_task(struct k_proc *X)
{
/* Do normal context exit cleanup */
_context_exit((tCCS *)X->workspace);
/* Set TF_TERM and TF_STOP state flags */
_k_state_bit_set(X, TF_STOP | TF_TERM);
/* Invoke abort function, if there is one */
if (X->fabort != NULL) {
X->fabort();
}
}
#ifndef CONFIG_ARCH_HAS_TASK_ABORT
/**
*
* @brief Microkernel handler for fatal task errors
*
* To be invoked when a task aborts implicitly, either by returning from its
* entry point or due to a software or hardware fault.
*
* @return does not return
*
* \NOMANUAL
*/
FUNC_NORETURN void _TaskAbort(void)
{
_task_ioctl(_k_current_task->Ident, TASK_ABORT);
/*
* Compiler can't tell that _task_ioctl() won't return and issues
* a warning unless we explicitly tell it that control never gets this
* far.
*/
CODE_UNREACHABLE;
}
#endif
/**
*
* @brief Install an abort handler
*
* This routine installs an abort handler for the calling task.
*
* The abort handler is run when the calling task is aborted by a _TaskAbort()
* or task_group_abort() call.
*
* Each call to task_abort_handler_set() replaces the previously installed
* handler.
*
* To remove an abort handler, set the parameter to NULL as below:
* task_abort_handler_set (NULL)
*
* @return N/A
*/
void task_abort_handler_set(void (*func)(void) /* abort handler */
)
{
_k_current_task->fabort = func;
}
/**
*
* @brief Handle a task operation request
*
* This routine handles any one of the following task operation requests:
* starting either a kernel or user task, aborting a task, suspending a task,
* resuming a task, blocking a task or unblocking a task
*
* @return N/A
*/
void _k_task_op(struct k_args *A)
{
ktask_t Tid = A->Args.g1.task;
struct k_proc *X = _k_task_list + OBJ_INDEX(Tid);
switch (A->Args.g1.opt) {
case TASK_START:
start_task(X, X->fstart);
break;
case TASK_ABORT:
abort_task(X);
break;
case TASK_SUSPEND:
_k_state_bit_set(X, TF_SUSP);
break;
case TASK_RESUME:
_k_state_bit_reset(X, TF_SUSP);
break;
case TASK_BLOCK:
_k_state_bit_set(X, TF_BLCK);
break;
case TASK_UNBLOCK:
_k_state_bit_reset(X, TF_BLCK);
break;
}
}
/**
*
* @brief Task operations
*
* @return N/A
*/
void _task_ioctl(ktask_t task, /* task on which to operate */
int opt /* task operation */
)
{
struct k_args A;
A.Comm = TSKOP;
A.Args.g1.task = task;
A.Args.g1.opt = opt;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Handle task group operation request
*
* This routine handles any one of the following task group operations requests:
* starting either kernel or user tasks, aborting tasks, suspending tasks,
* resuming tasks, blocking tasks or unblocking tasks
*
* @return N/A
*/
void _k_task_group_op(struct k_args *A)
{
ktask_group_t grp = A->Args.g1.group;
int opt = A->Args.g1.opt;
int i;
struct k_proc *X;
#ifdef CONFIG_TASK_DEBUG
if (opt == TASK_GROUP_BLOCK)
_k_debug_halt = 1;
if (opt == TASK_GROUP_UNBLOCK)
_k_debug_halt = 0;
#endif
for (i = 0, X = _k_task_list; i < _k_task_count; i++, X++) {
if (X->Group & grp) {
switch (opt) {
case TASK_GROUP_START:
start_task(X, X->fstart);
break;
case TASK_GROUP_ABORT:
abort_task(X);
break;
case TASK_GROUP_SUSPEND:
_k_state_bit_set(X, TF_SUSP);
break;
case TASK_GROUP_RESUME:
_k_state_bit_reset(X, TF_SUSP);
break;
case TASK_GROUP_BLOCK:
_k_state_bit_set(X, TF_BLCK);
break;
case TASK_GROUP_UNBLOCK:
_k_state_bit_reset(X, TF_BLCK);
break;
}
}
}
}
/**
*
* @brief Task group operations
*
* @return N/A
*/
void _task_group_ioctl(ktask_group_t group, /* task group */
int opt /* operation */
)
{
struct k_args A;
A.Comm = GRPOP;
A.Args.g1.group = group;
A.Args.g1.opt = opt;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Get task groups for task
*
* @return task groups associated with current task
*/
kpriority_t task_group_mask_get(void)
{
return _k_current_task->Group;
}
/**
*
* @brief Add task to task group(s)
*
* @return N/A
*/
void task_group_join(uint32_t groups)
{
_k_current_task->Group |= groups;
}
/**
*
* @brief Remove task from task group(s)
*
* @return N/A
*/
void task_group_leave(uint32_t groups)
{
_k_current_task->Group &= ~groups;
}
/**
*
* @brief Get task priority
*
* @return priority of current task
*/
kpriority_t task_priority_get(void)
{
return _k_current_task->Prio;
}
/**
*
* @brief Handle task set priority request
*
* @return N/A
*/
void _k_task_priority_set(struct k_args *A)
{
ktask_t Tid = A->Args.g1.task;
struct k_proc *X = _k_task_list + OBJ_INDEX(Tid);
_k_state_bit_set(X, TF_PRIO);
X->Prio = A->Args.g1.prio;
_k_state_bit_reset(X, TF_PRIO);
if (A->alloc)
FREEARGS(A);
}
/**
*
* @brief Set the priority of a task
*
* This routine changes the priority of the specified task.
*
* The call has immediate effect. If the calling task is no longer the highest
* priority runnable task, a task switch occurs.
*
* The priority should be specified in the range 0 to 62. 0 is the highest
* priority.
*
* @return N/A
*/
void task_priority_set(ktask_t task, /* task whose priority is to be set */
kpriority_t prio /* new priority */
)
{
struct k_args A;
A.Comm = SPRIO;
A.Args.g1.task = task;
A.Args.g1.prio = prio;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Handle task yield request
*
* @return N/A
*/
void _k_task_yield(struct k_args *A)
{
struct k_tqhd *H = _k_task_priority_list + _k_current_task->Prio;
struct k_proc *X = _k_current_task->Forw;
ARG_UNUSED(A);
if (X && H->Head == _k_current_task) {
_k_current_task->Forw = NULL;
H->Tail->Forw = _k_current_task;
H->Tail = _k_current_task;
H->Head = X;
}
}
/**
*
* @brief Yield the CPU to another task
*
* This routine yields the processor to the next equal priority task that is
* runnable. Using task_yield(), it is possible to achieve the effect of round
* robin scheduling. If no task with the same priority is runnable then no task
* switch occurs and the calling task resumes execution.
*
* @return N/A
*/
void task_yield(void)
{
struct k_args A;
A.Comm = YIELD;
KERNEL_ENTRY(&A);
}
/**
*
* @brief Set the entry point of a task
*
* This routine sets the entry point of a task to a given routine. It is only
* needed if the entry point is different from that specified in the project
* file. It must be called before task_start() to have any effect, so it
* cannot work with members of the EXE group or of any group that automatically
* starts when the application is loaded.
*
* The routine is executed when the task is started
*
* @return N/A
*/
void task_entry_set(ktask_t task, /* task */
void (*func)(void) /* entry point */
)
{
_k_task_list[OBJ_INDEX(task)].fstart = func;
}