924 lines
25 KiB
C
924 lines
25 KiB
C
/*
|
|
* Copyright (c) 2016 BayLibre, SAS
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_spi
|
|
|
|
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
|
|
#include <logging/log.h>
|
|
LOG_MODULE_REGISTER(spi_ll_stm32);
|
|
|
|
#include <sys/util.h>
|
|
#include <kernel.h>
|
|
#include <soc.h>
|
|
#include <errno.h>
|
|
#include <drivers/spi.h>
|
|
#include <toolchain.h>
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
#include <dt-bindings/dma/stm32_dma.h>
|
|
#include <drivers/dma.h>
|
|
#endif
|
|
#include <drivers/clock_control/stm32_clock_control.h>
|
|
#include <drivers/clock_control.h>
|
|
|
|
#include "spi_ll_stm32.h"
|
|
|
|
#define DEV_CFG(dev) \
|
|
(const struct spi_stm32_config * const)(dev->config->config_info)
|
|
|
|
#define DEV_DATA(dev) \
|
|
(struct spi_stm32_data * const)(dev->driver_data)
|
|
|
|
/*
|
|
* Check for SPI_SR_FRE to determine support for TI mode frame format
|
|
* error flag, because STM32F1 SoCs do not support it and STM32CUBE
|
|
* for F1 family defines an unused LL_SPI_SR_FRE.
|
|
*/
|
|
#ifdef CONFIG_SOC_SERIES_STM32MP1X
|
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCE | LL_SPI_SR_MODF | \
|
|
LL_SPI_SR_OVR | LL_SPI_SR_TIFRE)
|
|
#else
|
|
#if defined(LL_SPI_SR_UDR)
|
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_UDR | LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
|
|
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
|
|
#elif defined(SPI_SR_FRE)
|
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | \
|
|
LL_SPI_SR_OVR | LL_SPI_SR_FRE)
|
|
#else
|
|
#define SPI_STM32_ERR_MSK (LL_SPI_SR_CRCERR | LL_SPI_SR_MODF | LL_SPI_SR_OVR)
|
|
#endif
|
|
#endif /* CONFIG_SOC_SERIES_STM32MP1X */
|
|
|
|
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
/* dummy value used for transferring NOP when tx buf is null */
|
|
u32_t nop_tx;
|
|
|
|
/* This function is executed in the interrupt context */
|
|
static void dma_callback(void *arg, u32_t channel, int status)
|
|
{
|
|
/* callback_arg directly holds the client data */
|
|
struct spi_stm32_data *data = arg;
|
|
u32_t periph_addr;
|
|
|
|
if (status != 0) {
|
|
LOG_ERR("DMA callback error with channel %d.", channel);
|
|
data->dma_tx.transfer_complete = true;
|
|
data->dma_rx.transfer_complete = true;
|
|
return;
|
|
}
|
|
|
|
/* identify the origin of this callback */
|
|
if (channel == data->dma_tx.channel) {
|
|
/* spi tx direction has mem as source and periph as dest */
|
|
if (data->ctx.tx_count <= 1) {
|
|
/* if it was the last count, then we are done */
|
|
data->dma_tx.transfer_complete = true;
|
|
} else {
|
|
/* this part of the transfer ends */
|
|
data->dma_tx.transfer_complete = false;
|
|
/*
|
|
* Update the current Tx buffer, decreasing length of
|
|
* data->ctx.tx_count, by its own length
|
|
*/
|
|
spi_context_update_tx(&data->ctx, 1, data->ctx.tx_len);
|
|
/* keep the same dest (peripheral) */
|
|
periph_addr =
|
|
data->dma_tx.dma_cfg.head_block->dest_address;
|
|
/* and reload dma with a new source (memory) buffer */
|
|
dma_reload(data->dev_dma_tx,
|
|
data->dma_tx.channel,
|
|
(u32_t)data->ctx.tx_buf,
|
|
periph_addr,
|
|
data->ctx.tx_len);
|
|
}
|
|
} else if (channel == data->dma_rx.channel) {
|
|
/* spi rx direction has periph as source and mem as dest */
|
|
if (data->ctx.rx_count <= 1) {
|
|
/* if it was the last count, then we are done */
|
|
data->dma_rx.transfer_complete = true;
|
|
} else {
|
|
/* this part of the transfer ends */
|
|
data->dma_rx.transfer_complete = false;
|
|
/*
|
|
* Update the current Rx buffer, decreasing length of
|
|
* data->ctx.rx_count, by its own length
|
|
*/
|
|
spi_context_update_rx(&data->ctx, 1, data->ctx.rx_len);
|
|
/* keep the same source (peripheral) */
|
|
periph_addr =
|
|
data->dma_rx.dma_cfg.head_block->dest_address;
|
|
/* and reload dma with a new dest (memory) buffer */
|
|
dma_reload(data->dev_dma_rx,
|
|
data->dma_rx.channel,
|
|
periph_addr,
|
|
(u32_t)data->ctx.rx_buf,
|
|
data->ctx.rx_len);
|
|
}
|
|
} else {
|
|
LOG_ERR("DMA callback channel %d is not valid.", channel);
|
|
data->dma_tx.transfer_complete = true;
|
|
data->dma_rx.transfer_complete = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int spi_stm32_dma_tx_load(struct device *dev, const u8_t *buf,
|
|
size_t len)
|
|
{
|
|
const struct spi_stm32_config *cfg = DEV_CFG(dev);
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
struct dma_block_config blk_cfg;
|
|
int ret;
|
|
|
|
/* remember active TX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_tx;
|
|
|
|
/* prepare the block for this TX DMA channel */
|
|
memset(&blk_cfg, 0, sizeof(blk_cfg));
|
|
blk_cfg.block_size = len;
|
|
|
|
/* tx direction has memory as source and periph as dest. */
|
|
if (buf == NULL) {
|
|
nop_tx = 0;
|
|
/* if tx buff is null, then sends NOP on the line. */
|
|
blk_cfg.source_address = (u32_t)&nop_tx;
|
|
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
} else {
|
|
blk_cfg.source_address = (u32_t)buf;
|
|
if (data->dma_tx.src_addr_increment) {
|
|
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
}
|
|
|
|
blk_cfg.dest_address = (u32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
|
|
/* fifo mode NOT USED there */
|
|
if (data->dma_tx.dst_addr_increment) {
|
|
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
/* give the fifo mode from the DT */
|
|
blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold;
|
|
|
|
/* direction is given by the DT */
|
|
stream->dma_cfg.head_block = &blk_cfg;
|
|
/* give the client data as arg, as the callback comes from the dma */
|
|
stream->dma_cfg.callback_arg = data;
|
|
/* pass our client origin to the dma: data->dma_tx.dma_channel */
|
|
ret = dma_config(data->dev_dma_tx, data->dma_tx.channel,
|
|
&stream->dma_cfg);
|
|
/* the channel is the actual stream from 0 */
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* starting this dma transfer */
|
|
data->dma_tx.transfer_complete = false;
|
|
|
|
/* gives the request ID to the dma mux */
|
|
return dma_start(data->dev_dma_tx, data->dma_tx.channel);
|
|
}
|
|
|
|
static int spi_stm32_dma_rx_load(struct device *dev, u8_t *buf, size_t len)
|
|
{
|
|
const struct spi_stm32_config *cfg = DEV_CFG(dev);
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
struct dma_block_config blk_cfg;
|
|
int ret;
|
|
|
|
/* retrieve active RX DMA channel (used in callback) */
|
|
struct stream *stream = &data->dma_rx;
|
|
|
|
/* prepare the block for this RX DMA channel */
|
|
memset(&blk_cfg, 0, sizeof(blk_cfg));
|
|
blk_cfg.block_size = len;
|
|
|
|
/* rx direction has periph as source and mem as dest. */
|
|
blk_cfg.dest_address = (buf != NULL) ? (u32_t)buf : (u32_t)NULL;
|
|
blk_cfg.source_address = (u32_t)LL_SPI_DMA_GetRegAddr(cfg->spi);
|
|
if (data->dma_rx.src_addr_increment) {
|
|
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
if (data->dma_rx.dst_addr_increment) {
|
|
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
/* give the fifo mode from the DT */
|
|
blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold;
|
|
|
|
/* direction is given by the DT */
|
|
stream->dma_cfg.head_block = &blk_cfg;
|
|
stream->dma_cfg.callback_arg = data;
|
|
|
|
|
|
/* pass our client origin to the dma: data->dma_rx.channel */
|
|
ret = dma_config(data->dev_dma_rx, data->dma_rx.channel,
|
|
&stream->dma_cfg);
|
|
/* the channel is the actual stream from 0 */
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* starting this dma transfer */
|
|
data->dma_rx.transfer_complete = false;
|
|
|
|
/* gives the request ID to the dma mux */
|
|
return dma_start(data->dev_dma_rx, data->dma_rx.channel);
|
|
}
|
|
|
|
static int spi_dma_move_buffers(struct device *dev)
|
|
{
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
int ret;
|
|
|
|
/* the length to transmit depends on the source data size (1,2 4) */
|
|
data->dma_segment_len = data->ctx.tx_len
|
|
/ data->dma_tx.dma_cfg.source_data_size;
|
|
|
|
/* Load receive first, so it can accept transmit data */
|
|
if (data->ctx.rx_len) {
|
|
ret = spi_stm32_dma_rx_load(dev, data->ctx.rx_buf,
|
|
data->dma_segment_len);
|
|
} else {
|
|
ret = spi_stm32_dma_rx_load(dev, NULL, data->dma_segment_len);
|
|
}
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (data->ctx.tx_len) {
|
|
ret = spi_stm32_dma_tx_load(dev, data->ctx.tx_buf,
|
|
data->dma_segment_len);
|
|
} else {
|
|
ret = spi_stm32_dma_tx_load(dev, NULL, data->dma_segment_len);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool spi_stm32_dma_transfer_ongoing(struct spi_stm32_data *data)
|
|
{
|
|
return ((data->dma_tx.transfer_complete != true)
|
|
&& (data->dma_rx.transfer_complete != true));
|
|
}
|
|
#endif /* CONFIG_SPI_STM32_DMA */
|
|
|
|
/* Value to shift out when no application data needs transmitting. */
|
|
#define SPI_STM32_TX_NOP 0x00
|
|
|
|
static bool spi_stm32_transfer_ongoing(struct spi_stm32_data *data)
|
|
{
|
|
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
|
|
}
|
|
|
|
static int spi_stm32_get_err(SPI_TypeDef *spi)
|
|
{
|
|
u32_t sr = LL_SPI_ReadReg(spi, SR);
|
|
|
|
if (sr & SPI_STM32_ERR_MSK) {
|
|
LOG_ERR("%s: err=%d", __func__,
|
|
sr & (u32_t)SPI_STM32_ERR_MSK);
|
|
|
|
/* OVR error must be explicitly cleared */
|
|
if (LL_SPI_IsActiveFlag_OVR(spi)) {
|
|
LL_SPI_ClearFlag_OVR(spi);
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Shift a SPI frame as master. */
|
|
static void spi_stm32_shift_m(SPI_TypeDef *spi, struct spi_stm32_data *data)
|
|
{
|
|
u16_t tx_frame = SPI_STM32_TX_NOP;
|
|
u16_t rx_frame;
|
|
|
|
while (!ll_func_tx_is_empty(spi)) {
|
|
/* NOP */
|
|
}
|
|
|
|
#ifdef CONFIG_SOC_SERIES_STM32MP1X
|
|
/* With the STM32MP1, if the device is the SPI master, we need to enable
|
|
* the start of the transfer with LL_SPI_StartMasterTransfer(spi)
|
|
*/
|
|
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
|
|
LL_SPI_StartMasterTransfer(spi);
|
|
while (!LL_SPI_IsActiveMasterTransfer(spi)) {
|
|
/* NOP */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
if (spi_context_tx_buf_on(&data->ctx)) {
|
|
tx_frame = UNALIGNED_GET((u8_t *)(data->ctx.tx_buf));
|
|
}
|
|
LL_SPI_TransmitData8(spi, tx_frame);
|
|
/* The update is ignored if TX is off. */
|
|
spi_context_update_tx(&data->ctx, 1, 1);
|
|
} else {
|
|
if (spi_context_tx_buf_on(&data->ctx)) {
|
|
tx_frame = UNALIGNED_GET((u16_t *)(data->ctx.tx_buf));
|
|
}
|
|
LL_SPI_TransmitData16(spi, tx_frame);
|
|
/* The update is ignored if TX is off. */
|
|
spi_context_update_tx(&data->ctx, 2, 1);
|
|
}
|
|
|
|
while (!ll_func_rx_is_not_empty(spi)) {
|
|
/* NOP */
|
|
}
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
rx_frame = LL_SPI_ReceiveData8(spi);
|
|
if (spi_context_rx_buf_on(&data->ctx)) {
|
|
UNALIGNED_PUT(rx_frame, (u8_t *)data->ctx.rx_buf);
|
|
}
|
|
spi_context_update_rx(&data->ctx, 1, 1);
|
|
} else {
|
|
rx_frame = LL_SPI_ReceiveData16(spi);
|
|
if (spi_context_rx_buf_on(&data->ctx)) {
|
|
UNALIGNED_PUT(rx_frame, (u16_t *)data->ctx.rx_buf);
|
|
}
|
|
spi_context_update_rx(&data->ctx, 2, 1);
|
|
}
|
|
}
|
|
|
|
/* Shift a SPI frame as slave. */
|
|
static void spi_stm32_shift_s(SPI_TypeDef *spi, struct spi_stm32_data *data)
|
|
{
|
|
if (ll_func_tx_is_empty(spi) && spi_context_tx_on(&data->ctx)) {
|
|
u16_t tx_frame;
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
tx_frame = UNALIGNED_GET((u8_t *)(data->ctx.tx_buf));
|
|
LL_SPI_TransmitData8(spi, tx_frame);
|
|
spi_context_update_tx(&data->ctx, 1, 1);
|
|
} else {
|
|
tx_frame = UNALIGNED_GET((u16_t *)(data->ctx.tx_buf));
|
|
LL_SPI_TransmitData16(spi, tx_frame);
|
|
spi_context_update_tx(&data->ctx, 2, 1);
|
|
}
|
|
} else {
|
|
ll_func_disable_int_tx_empty(spi);
|
|
}
|
|
|
|
if (ll_func_rx_is_not_empty(spi) &&
|
|
spi_context_rx_buf_on(&data->ctx)) {
|
|
u16_t rx_frame;
|
|
|
|
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
|
|
rx_frame = LL_SPI_ReceiveData8(spi);
|
|
UNALIGNED_PUT(rx_frame, (u8_t *)data->ctx.rx_buf);
|
|
spi_context_update_rx(&data->ctx, 1, 1);
|
|
} else {
|
|
rx_frame = LL_SPI_ReceiveData16(spi);
|
|
UNALIGNED_PUT(rx_frame, (u16_t *)data->ctx.rx_buf);
|
|
spi_context_update_rx(&data->ctx, 2, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Without a FIFO, we can only shift out one frame's worth of SPI
|
|
* data, and read the response back.
|
|
*
|
|
* TODO: support 16-bit data frames.
|
|
*/
|
|
static int spi_stm32_shift_frames(SPI_TypeDef *spi, struct spi_stm32_data *data)
|
|
{
|
|
u16_t operation = data->ctx.config->operation;
|
|
|
|
if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) {
|
|
spi_stm32_shift_m(spi, data);
|
|
} else {
|
|
spi_stm32_shift_s(spi, data);
|
|
}
|
|
|
|
return spi_stm32_get_err(spi);
|
|
}
|
|
|
|
static void spi_stm32_complete(struct spi_stm32_data *data, SPI_TypeDef *spi,
|
|
int status)
|
|
{
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
ll_func_disable_int_tx_empty(spi);
|
|
ll_func_disable_int_rx_not_empty(spi);
|
|
ll_func_disable_int_errors(spi);
|
|
#endif
|
|
|
|
spi_context_cs_control(&data->ctx, false);
|
|
|
|
#if DT_HAS_COMPAT(st_stm32_spi_fifo)
|
|
/* Flush RX buffer */
|
|
while (ll_func_rx_is_not_empty(spi)) {
|
|
(void) LL_SPI_ReceiveData8(spi);
|
|
}
|
|
#endif
|
|
|
|
if (LL_SPI_GetMode(spi) == LL_SPI_MODE_MASTER) {
|
|
while (ll_func_spi_is_busy(spi)) {
|
|
/* NOP */
|
|
}
|
|
}
|
|
/* BSY flag is cleared when MODF flag is raised */
|
|
if (LL_SPI_IsActiveFlag_MODF(spi)) {
|
|
LL_SPI_ClearFlag_MODF(spi);
|
|
}
|
|
|
|
ll_func_disable_spi(spi);
|
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
spi_context_complete(&data->ctx, status);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
static void spi_stm32_isr(void *arg)
|
|
{
|
|
struct device * const dev = (struct device *) arg;
|
|
const struct spi_stm32_config *cfg = dev->config->config_info;
|
|
struct spi_stm32_data *data = dev->driver_data;
|
|
SPI_TypeDef *spi = cfg->spi;
|
|
int err;
|
|
|
|
err = spi_stm32_get_err(spi);
|
|
if (err) {
|
|
spi_stm32_complete(data, spi, err);
|
|
return;
|
|
}
|
|
|
|
if (spi_stm32_transfer_ongoing(data)) {
|
|
err = spi_stm32_shift_frames(spi, data);
|
|
}
|
|
|
|
if (err || !spi_stm32_transfer_ongoing(data)) {
|
|
spi_stm32_complete(data, spi, err);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int spi_stm32_configure(struct device *dev,
|
|
const struct spi_config *config)
|
|
{
|
|
const struct spi_stm32_config *cfg = DEV_CFG(dev);
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
const u32_t scaler[] = {
|
|
LL_SPI_BAUDRATEPRESCALER_DIV2,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV4,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV8,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV16,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV32,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV64,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV128,
|
|
LL_SPI_BAUDRATEPRESCALER_DIV256
|
|
};
|
|
SPI_TypeDef *spi = cfg->spi;
|
|
u32_t clock;
|
|
int br;
|
|
|
|
if (spi_context_configured(&data->ctx, config)) {
|
|
/* Nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
if ((SPI_WORD_SIZE_GET(config->operation) != 8)
|
|
&& (SPI_WORD_SIZE_GET(config->operation) != 16)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
if (clock_control_get_rate(device_get_binding(STM32_CLOCK_CONTROL_NAME),
|
|
(clock_control_subsys_t) &cfg->pclken, &clock) < 0) {
|
|
LOG_ERR("Failed call clock_control_get_rate");
|
|
return -EIO;
|
|
}
|
|
|
|
for (br = 1 ; br <= ARRAY_SIZE(scaler) ; ++br) {
|
|
u32_t clk = clock >> br;
|
|
|
|
if (clk <= config->frequency) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (br > ARRAY_SIZE(scaler)) {
|
|
LOG_ERR("Unsupported frequency %uHz, max %uHz, min %uHz",
|
|
config->frequency,
|
|
clock >> 1,
|
|
clock >> ARRAY_SIZE(scaler));
|
|
return -EINVAL;
|
|
}
|
|
|
|
LL_SPI_Disable(spi);
|
|
LL_SPI_SetBaudRatePrescaler(spi, scaler[br - 1]);
|
|
|
|
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
|
|
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
|
|
} else {
|
|
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
|
|
}
|
|
|
|
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
|
|
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
|
|
} else {
|
|
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
|
|
}
|
|
|
|
LL_SPI_SetTransferDirection(spi, LL_SPI_FULL_DUPLEX);
|
|
|
|
if (config->operation & SPI_TRANSFER_LSB) {
|
|
LL_SPI_SetTransferBitOrder(spi, LL_SPI_LSB_FIRST);
|
|
} else {
|
|
LL_SPI_SetTransferBitOrder(spi, LL_SPI_MSB_FIRST);
|
|
}
|
|
|
|
LL_SPI_DisableCRC(spi);
|
|
|
|
if (config->cs || !IS_ENABLED(CONFIG_SPI_STM32_USE_HW_SS)) {
|
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_SOFT);
|
|
} else {
|
|
if (config->operation & SPI_OP_MODE_SLAVE) {
|
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_INPUT);
|
|
} else {
|
|
LL_SPI_SetNSSMode(spi, LL_SPI_NSS_HARD_OUTPUT);
|
|
}
|
|
}
|
|
|
|
if (config->operation & SPI_OP_MODE_SLAVE) {
|
|
LL_SPI_SetMode(spi, LL_SPI_MODE_SLAVE);
|
|
} else {
|
|
LL_SPI_SetMode(spi, LL_SPI_MODE_MASTER);
|
|
}
|
|
|
|
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
|
|
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_8BIT);
|
|
} else {
|
|
LL_SPI_SetDataWidth(spi, LL_SPI_DATAWIDTH_16BIT);
|
|
}
|
|
|
|
#if DT_HAS_COMPAT(st_stm32_spi_fifo)
|
|
ll_func_set_fifo_threshold_8bit(spi);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
/* with LL_SPI_FULL_DUPLEX mode, both tx and Rx DMA are on */
|
|
if (data->dev_dma_tx) {
|
|
LL_SPI_EnableDMAReq_TX(spi);
|
|
}
|
|
if (data->dev_dma_rx) {
|
|
LL_SPI_EnableDMAReq_RX(spi);
|
|
}
|
|
#endif /* CONFIG_SPI_STM32_DMA */
|
|
|
|
#ifndef CONFIG_SOC_SERIES_STM32F1X
|
|
LL_SPI_SetStandard(spi, LL_SPI_PROTOCOL_MOTOROLA);
|
|
#endif
|
|
|
|
/* At this point, it's mandatory to set this on the context! */
|
|
data->ctx.config = config;
|
|
|
|
spi_context_cs_configure(&data->ctx);
|
|
|
|
LOG_DBG("Installed config %p: freq %uHz (div = %u),"
|
|
" mode %u/%u/%u, slave %u",
|
|
config, clock >> br, 1 << br,
|
|
(SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0,
|
|
(SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0,
|
|
(SPI_MODE_GET(config->operation) & SPI_MODE_LOOP) ? 1 : 0,
|
|
config->slave);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spi_stm32_release(struct device *dev,
|
|
const struct spi_config *config)
|
|
{
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int transceive(struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous, struct k_poll_signal *signal)
|
|
{
|
|
const struct spi_stm32_config *cfg = DEV_CFG(dev);
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
SPI_TypeDef *spi = cfg->spi;
|
|
int ret;
|
|
|
|
if (!tx_bufs && !rx_bufs) {
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_STM32_INTERRUPT
|
|
if (asynchronous) {
|
|
return -ENOTSUP;
|
|
}
|
|
#endif
|
|
|
|
spi_context_lock(&data->ctx, asynchronous, signal);
|
|
|
|
ret = spi_stm32_configure(dev, config);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Set buffers info */
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
#if DT_HAS_COMPAT(st_stm32_spi_fifo)
|
|
/* Flush RX buffer */
|
|
while (ll_func_rx_is_not_empty(spi)) {
|
|
(void) LL_SPI_ReceiveData8(spi);
|
|
}
|
|
#endif
|
|
|
|
LL_SPI_Enable(spi);
|
|
|
|
/* This is turned off in spi_stm32_complete(). */
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
ll_func_enable_int_errors(spi);
|
|
|
|
if (rx_bufs) {
|
|
ll_func_enable_int_rx_not_empty(spi);
|
|
}
|
|
|
|
ll_func_enable_int_tx_empty(spi);
|
|
|
|
ret = spi_context_wait_for_completion(&data->ctx);
|
|
#else
|
|
do {
|
|
ret = spi_stm32_shift_frames(spi, data);
|
|
} while (!ret && spi_stm32_transfer_ongoing(data));
|
|
|
|
spi_stm32_complete(data, spi, ret);
|
|
|
|
#ifdef CONFIG_SPI_SLAVE
|
|
if (spi_context_is_slave(&data->ctx) && !ret) {
|
|
ret = data->ctx.recv_frames;
|
|
}
|
|
#endif /* CONFIG_SPI_SLAVE */
|
|
|
|
#endif
|
|
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
static int transceive_dma(struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
bool asynchronous, struct k_poll_signal *signal)
|
|
{
|
|
const struct spi_stm32_config *cfg = DEV_CFG(dev);
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
SPI_TypeDef *spi = cfg->spi;
|
|
int ret;
|
|
|
|
if (!tx_bufs && !rx_bufs) {
|
|
return 0;
|
|
}
|
|
|
|
if (asynchronous) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
spi_context_lock(&data->ctx, asynchronous, signal);
|
|
|
|
data->dma_tx.transfer_complete = false;
|
|
data->dma_rx.transfer_complete = false;
|
|
|
|
ret = spi_stm32_configure(dev, config);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Set buffers info */
|
|
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
|
|
|
|
ret = spi_dma_move_buffers(dev);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
LL_SPI_Enable(spi);
|
|
|
|
do {
|
|
} while (spi_stm32_dma_transfer_ongoing(data));
|
|
|
|
/* This is turned off in spi_stm32_complete(). */
|
|
spi_context_cs_control(&data->ctx, true);
|
|
|
|
spi_context_release(&data->ctx, ret);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_SPI_STM32_DMA */
|
|
|
|
static int spi_stm32_transceive(struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs)
|
|
{
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
struct spi_stm32_data *data = DEV_DATA(dev);
|
|
|
|
if ((data->dma_tx.dma_name != NULL)
|
|
&& (data->dma_rx.dma_name != NULL)) {
|
|
return transceive_dma(dev, config, tx_bufs, rx_bufs,
|
|
false, NULL);
|
|
}
|
|
#endif /* CONFIG_SPI_STM32_DMA */
|
|
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
static int spi_stm32_transceive_async(struct device *dev,
|
|
const struct spi_config *config,
|
|
const struct spi_buf_set *tx_bufs,
|
|
const struct spi_buf_set *rx_bufs,
|
|
struct k_poll_signal *async)
|
|
{
|
|
return transceive(dev, config, tx_bufs, rx_bufs, true, async);
|
|
}
|
|
#endif /* CONFIG_SPI_ASYNC */
|
|
|
|
static const struct spi_driver_api api_funcs = {
|
|
.transceive = spi_stm32_transceive,
|
|
#ifdef CONFIG_SPI_ASYNC
|
|
.transceive_async = spi_stm32_transceive_async,
|
|
#endif
|
|
.release = spi_stm32_release,
|
|
};
|
|
|
|
static int spi_stm32_init(struct device *dev)
|
|
{
|
|
struct spi_stm32_data *data __attribute__((unused)) = dev->driver_data;
|
|
const struct spi_stm32_config *cfg = dev->config->config_info;
|
|
|
|
__ASSERT_NO_MSG(device_get_binding(STM32_CLOCK_CONTROL_NAME));
|
|
|
|
if (clock_control_on(device_get_binding(STM32_CLOCK_CONTROL_NAME),
|
|
(clock_control_subsys_t) &cfg->pclken) != 0) {
|
|
LOG_ERR("Could not enable SPI clock");
|
|
return -EIO;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
cfg->irq_config(dev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPI_STM32_DMA
|
|
if (data->dma_tx.dma_name != NULL) {
|
|
/* Get the binding to the DMA device */
|
|
data->dev_dma_tx = device_get_binding(data->dma_tx.dma_name);
|
|
if (!data->dev_dma_tx) {
|
|
LOG_ERR("%s device not found", data->dma_tx.dma_name);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (data->dma_rx.dma_name != NULL) {
|
|
data->dev_dma_rx = device_get_binding(data->dma_rx.dma_name);
|
|
if (!data->dev_dma_rx) {
|
|
LOG_ERR("%s device not found", data->dma_rx.dma_name);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
#endif /* CONFIG_SPI_STM32_DMA */
|
|
spi_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_STM32_INTERRUPT
|
|
#define STM32_SPI_IRQ_HANDLER_DECL(id) \
|
|
static void spi_stm32_irq_config_func_##id(struct device *dev)
|
|
#define STM32_SPI_IRQ_HANDLER_FUNC(id) \
|
|
.irq_config = spi_stm32_irq_config_func_##id,
|
|
#define STM32_SPI_IRQ_HANDLER(id) \
|
|
static void spi_stm32_irq_config_func_##id(struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(id), \
|
|
DT_INST_IRQ(id, priority), \
|
|
spi_stm32_isr, DEVICE_GET(spi_stm32_##id), 0); \
|
|
irq_enable(DT_INST_IRQN(id)); \
|
|
}
|
|
#else
|
|
#define STM32_SPI_IRQ_HANDLER_DECL(id)
|
|
#define STM32_SPI_IRQ_HANDLER_FUNC(id)
|
|
#define STM32_SPI_IRQ_HANDLER(id)
|
|
#endif
|
|
|
|
#define DMA_CHANNEL_CONFIG(id, dir) \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, dir, channel_config)
|
|
#define DMA_FEATURES(id, dir) \
|
|
DT_INST_DMAS_CELL_BY_NAME(id, dir, features)
|
|
|
|
#define SPI_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
|
|
.dma_##dir = { \
|
|
.dma_name = DT_INST_DMAS_LABEL_BY_NAME(index, dir), \
|
|
.channel = \
|
|
DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
|
|
.dma_cfg = { \
|
|
.dma_slot = \
|
|
DT_INST_DMAS_CELL_BY_NAME(index, dir, slot), \
|
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.source_burst_length = 1, /* SINGLE transfer */ \
|
|
.dest_burst_length = 1, /* SINGLE transfer */ \
|
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.dma_callback = dma_callback, \
|
|
.block_count = 2, \
|
|
}, \
|
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
|
|
DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.transfer_complete = false, \
|
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
|
|
DMA_FEATURES(index, dir)) \
|
|
}
|
|
|
|
#define STM32_SPI_INIT(id) \
|
|
STM32_SPI_IRQ_HANDLER_DECL(id); \
|
|
\
|
|
static const struct spi_stm32_config spi_stm32_cfg_##id = { \
|
|
.spi = (SPI_TypeDef *) DT_INST_REG_ADDR(id),\
|
|
.pclken = { \
|
|
.enr = DT_INST_CLOCKS_CELL(id, bits), \
|
|
.bus = DT_INST_CLOCKS_CELL(id, bus) \
|
|
}, \
|
|
STM32_SPI_IRQ_HANDLER_FUNC(id) \
|
|
}; \
|
|
\
|
|
static struct spi_stm32_data spi_stm32_dev_data_##id = { \
|
|
SPI_CONTEXT_INIT_LOCK(spi_stm32_dev_data_##id, ctx), \
|
|
SPI_CONTEXT_INIT_SYNC(spi_stm32_dev_data_##id, ctx), \
|
|
UTIL_AND(DT_INST_DMAS_HAS_NAME(id, rx), \
|
|
SPI_DMA_CHANNEL_INIT(id, rx, RX, PERIPHERAL, MEMORY)), \
|
|
UTIL_AND(DT_INST_DMAS_HAS_NAME(id, tx), \
|
|
SPI_DMA_CHANNEL_INIT(id, tx, TX, MEMORY, PERIPHERAL)), \
|
|
}; \
|
|
\
|
|
DEVICE_AND_API_INIT(spi_stm32_##id, DT_INST_LABEL(id), \
|
|
&spi_stm32_init, \
|
|
&spi_stm32_dev_data_##id, &spi_stm32_cfg_##id, \
|
|
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
|
|
&api_funcs); \
|
|
\
|
|
STM32_SPI_IRQ_HANDLER(id)
|
|
|
|
#if DT_HAS_DRV_INST(0)
|
|
STM32_SPI_INIT(0)
|
|
#endif /* DT_HAS_DRV_INST(0) */
|
|
|
|
#if DT_HAS_DRV_INST(1)
|
|
STM32_SPI_INIT(1)
|
|
#endif /* DT_HAS_DRV_INST(1) */
|
|
|
|
#if DT_HAS_DRV_INST(2)
|
|
STM32_SPI_INIT(2)
|
|
#endif /* DT_HAS_DRV_INST(2) */
|
|
|
|
#if DT_HAS_DRV_INST(3)
|
|
STM32_SPI_INIT(3)
|
|
#endif /* DT_HAS_DRV_INST(3) */
|
|
|
|
#if DT_HAS_DRV_INST(4)
|
|
STM32_SPI_INIT(4)
|
|
#endif /* DT_HAS_DRV_INST(4) */
|
|
|
|
#if DT_HAS_DRV_INST(5)
|
|
STM32_SPI_INIT(5)
|
|
#endif /* DT_HAS_DRV_INST(5) */
|