zephyr/drivers/clock_control/clock_control_litex.c

1792 lines
43 KiB
C

/*
* Copyright (c) 2020 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/types.h>
#include <device.h>
#include <devicetree.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/clock_control_litex.h>
#include "clock_control_litex.h"
#include <logging/log.h>
#include <logging/log_ctrl.h>
#include <sys/util.h>
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <kernel.h>
LOG_MODULE_REGISTER(CLK_CTRL_LITEX, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
static struct litex_clk_device *ldev; /* global struct for whole driver */
static struct litex_clk_clkout *clkouts;/* clkout array for whole driver */
/* All DRP regs addresses and sizes */
static struct litex_drp_reg drp[] = {
{DRP_ADDR_RESET, DRP_SIZE_RESET},
{DRP_ADDR_LOCKED, DRP_SIZE_LOCKED},
{DRP_ADDR_READ, DRP_SIZE_READ},
{DRP_ADDR_WRITE, DRP_SIZE_WRITE},
{DRP_ADDR_DRDY, DRP_SIZE_DRDY},
{DRP_ADDR_ADR, DRP_SIZE_ADR},
{DRP_ADDR_DAT_W, DRP_SIZE_DAT_W},
{DRP_ADDR_DAT_R, DRP_SIZE_DAT_R},
};
struct litex_clk_regs_addr litex_clk_regs_addr_init(void)
{
struct litex_clk_regs_addr m;
uint32_t i, addr;
addr = CLKOUT0_REG1;
for (i = 0; i <= CLKOUT_MAX; i++) {
if (i == 5) {
/*
*special case because CLKOUT5 have its reg addresses
*placed lower than other CLKOUTs
*/
m.clkout[5].reg1 = CLKOUT5_REG1;
m.clkout[5].reg2 = CLKOUT5_REG2;
} else {
m.clkout[i].reg1 = addr;
addr++;
m.clkout[i].reg2 = addr;
addr++;
}
}
return m;
}
/*
* These lookup tables are taken from:
* https://github.com/Digilent/Zybo-hdmi-out/blob/b991fff6e964420ae3c00c3dbee52f2ad748b3ba/sdk/displaydemo/src/dynclk/dynclk.h
*
* 2015 Copyright Digilent Incorporated
* Author: Sam Bobrowicz
*
*/
/* MMCM loop filter lookup table */
static const uint32_t litex_clk_filter_table[] = {
0b0001011111,
0b0001010111,
0b0001111011,
0b0001011011,
0b0001101011,
0b0001110011,
0b0001110011,
0b0001110011,
0b0001110011,
0b0001001011,
0b0001001011,
0b0001001011,
0b0010110011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001010011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0001100011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010010011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011,
0b0010100011
};
/* MMCM lock detection lookup table */
static const uint64_t litex_clk_lock_table[] = {
0b0011000110111110100011111010010000000001,
0b0011000110111110100011111010010000000001,
0b0100001000111110100011111010010000000001,
0b0101101011111110100011111010010000000001,
0b0111001110111110100011111010010000000001,
0b1000110001111110100011111010010000000001,
0b1001110011111110100011111010010000000001,
0b1011010110111110100011111010010000000001,
0b1100111001111110100011111010010000000001,
0b1110011100111110100011111010010000000001,
0b1111111111111000010011111010010000000001,
0b1111111111110011100111111010010000000001,
0b1111111111101110111011111010010000000001,
0b1111111111101011110011111010010000000001,
0b1111111111101000101011111010010000000001,
0b1111111111100111000111111010010000000001,
0b1111111111100011111111111010010000000001,
0b1111111111100010011011111010010000000001,
0b1111111111100000110111111010010000000001,
0b1111111111011111010011111010010000000001,
0b1111111111011101101111111010010000000001,
0b1111111111011100001011111010010000000001,
0b1111111111011010100111111010010000000001,
0b1111111111011001000011111010010000000001,
0b1111111111011001000011111010010000000001,
0b1111111111010111011111111010010000000001,
0b1111111111010101111011111010010000000001,
0b1111111111010101111011111010010000000001,
0b1111111111010100010111111010010000000001,
0b1111111111010100010111111010010000000001,
0b1111111111010010110011111010010000000001,
0b1111111111010010110011111010010000000001,
0b1111111111010010110011111010010000000001,
0b1111111111010001001111111010010000000001,
0b1111111111010001001111111010010000000001,
0b1111111111010001001111111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001,
0b1111111111001111101011111010010000000001
};
/* End of copied code */
/* Helper function for filter lookup table */
static inline uint32_t litex_clk_lookup_filter(uint32_t glob_mul)
{
return litex_clk_filter_table[glob_mul - 1];
}
/* Helper function for lock lookup table */
static inline uint64_t litex_clk_lookup_lock(uint32_t glob_mul)
{
return litex_clk_lock_table[glob_mul - 1];
}
static inline void litex_clk_set_reg(uint32_t reg, uint32_t val)
{
litex_write((uint32_t *)drp[reg].addr, drp[reg].size, val);
}
static inline uint32_t litex_clk_get_reg(uint32_t reg)
{
return litex_read((uint32_t *)drp[reg].addr, drp[reg].size);
}
static inline void litex_clk_assert_reg(uint32_t reg)
{
int assert = (1 << (drp[reg].size * BITS_PER_BYTE)) - 1;
litex_clk_set_reg(reg, assert);
}
static inline void litex_clk_deassert_reg(uint32_t reg)
{
litex_clk_set_reg(reg, ZERO_REG);
}
static int litex_clk_wait(uint32_t reg)
{
uint32_t timeout;
__ASSERT(reg == DRP_LOCKED || reg == DRP_DRDY, "Unsupported register! Please provide DRP_LOCKED or DRP_DRDY");
if (reg == DRP_LOCKED) {
timeout = ldev->timeout.lock;
} else {
timeout = ldev->timeout.drdy;
}
/*Waiting for signal to assert in reg*/
while (!litex_clk_get_reg(reg) && timeout) {
timeout--;
k_sleep(K_MSEC(1));
}
if (timeout == 0) {
LOG_WRN("Timeout occured when waiting for the register: 0x%x", reg);
return -ETIME;
}
return 0;
}
/* Read value written in given internal MMCM register*/
static int litex_clk_get_DO(uint8_t clk_reg_addr, uint16_t *res)
{
int ret;
litex_clk_set_reg(DRP_ADR, clk_reg_addr);
litex_clk_assert_reg(DRP_READ);
litex_clk_deassert_reg(DRP_READ);
ret = litex_clk_wait(DRP_DRDY);
if (ret != 0) {
return ret;
}
*res = litex_clk_get_reg(DRP_DAT_R);
return 0;
}
/* Get global divider and multiplier values and update global config */
static int litex_clk_update_global_config(void)
{
int ret;
uint16_t divreg, mult2;
uint8_t low_time, high_time;
ret = litex_clk_get_DO(CLKFBOUT_REG2, &mult2);
if (ret != 0) {
return ret;
}
ret = litex_clk_get_DO(DIV_REG, &divreg);
if (ret != 0) {
return ret;
}
if (mult2 & (NO_CNT_MASK << NO_CNT_POS)) {
ldev->g_config.mul = 1;
} else {
uint16_t mult1;
ret = litex_clk_get_DO(CLKFBOUT_REG1, &mult1);
if (ret != 0) {
return ret;
}
low_time = mult1 & HL_TIME_MASK;
high_time = (mult1 >> HIGH_TIME_POS) & HL_TIME_MASK;
ldev->g_config.mul = low_time + high_time;
}
if (divreg & (NO_CNT_MASK << NO_CNT_DIVREG_POS)) {
ldev->g_config.div = 1;
} else {
low_time = divreg & HL_TIME_MASK;
high_time = (divreg >> HIGH_TIME_POS) & HL_TIME_MASK;
ldev->g_config.div = low_time + high_time;
}
return 0;
}
static uint64_t litex_clk_calc_global_frequency(uint32_t mul, uint32_t div)
{
uint64_t f;
f = (uint64_t)ldev->sys_clk_freq * (uint64_t)mul;
f /= div;
return f;
}
/* Calculate frequency with real global params and update global config */
static uint64_t litex_clk_get_real_global_frequency(void)
{
uint64_t f;
litex_clk_update_global_config();
f = litex_clk_calc_global_frequency(ldev->g_config.mul,
ldev->g_config.div);
ldev->g_config.freq = f;
ldev->ts_g_config.div = ldev->g_config.div;
ldev->ts_g_config.mul = ldev->g_config.mul;
ldev->ts_g_config.freq = ldev->g_config.freq;
return f;
}
/* Return dividers of given CLKOUT */
static int litex_clk_get_clkout_divider(struct litex_clk_clkout *lcko,
uint32_t *divider, uint32_t *fract_cnt)
{
struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init();
int ret;
uint16_t div, frac;
uint8_t clkout_nr = lcko->id;
uint8_t low_time, high_time;
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &div);
if (ret != 0) {
return ret;
}
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &frac);
if (ret != 0) {
return ret;
}
low_time = div & HL_TIME_MASK;
high_time = (div >> HIGH_TIME_POS) & HL_TIME_MASK;
*divider = low_time + high_time;
*fract_cnt = (frac >> FRAC_POS) & FRAC_MASK;
return 0;
}
/* Debug functions */
#ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG
static void litex_clk_check_DO(char *reg_name, uint8_t clk_reg_addr,
uint16_t *res)
{
int ret;
ret = litex_clk_get_DO(clk_reg_addr, res);
if (ret != 0)
LOG_ERR("%s: read error: %d", reg_name, ret);
else
LOG_DBG("%s: 0x%x", reg_name, *res);
}
static void litex_clk_print_general_regs(void)
{
uint16_t power_reg, div_reg, clkfbout_reg1, clkfbout_reg2,
lock_reg1, lock_reg2, lock_reg3, filt_reg1, filt_reg2;
litex_clk_check_DO("POWER_REG", POWER_REG, &power_reg);
litex_clk_check_DO("DIV_REG", DIV_REG, &div_reg);
litex_clk_check_DO("MUL_REG1", CLKFBOUT_REG1, &clkfbout_reg1);
litex_clk_check_DO("MUL_REG2", CLKFBOUT_REG2, &clkfbout_reg2);
litex_clk_check_DO("LOCK_REG1", LOCK_REG1, &lock_reg1);
litex_clk_check_DO("LOCK_REG2", LOCK_REG2, &lock_reg2);
litex_clk_check_DO("LOCK_REG3", LOCK_REG3, &lock_reg3);
litex_clk_check_DO("FILT_REG1", FILT_REG1, &filt_reg1);
litex_clk_check_DO("FILT_REG2", FILT_REG2, &filt_reg2);
}
static void litex_clk_print_clkout_regs(uint8_t clkout, uint8_t reg1,
uint8_t reg2)
{
uint16_t clkout_reg1, clkout_reg2;
char reg_name[16];
sprintf(reg_name, "CLKOUT%u REG1", clkout);
litex_clk_check_DO(reg_name, reg1, &clkout_reg1);
sprintf(reg_name, "CLKOUT%u REG2", clkout);
litex_clk_check_DO(reg_name, reg2, &clkout_reg2);
}
static void litex_clk_print_all_regs(void)
{
struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init();
uint32_t i;
litex_clk_print_general_regs();
for (i = 0; i < ldev->nclkout; i++) {
litex_clk_print_clkout_regs(i, drp_addr.clkout[i].reg1,
drp_addr.clkout[i].reg2);
}
}
static void litex_clk_print_params(struct litex_clk_clkout *lcko)
{
LOG_DBG("CLKOUT%d DUMP:", lcko->id);
LOG_DBG("Defaults:");
LOG_DBG("f: %u d: %u/%u p: %u",
lcko->def.freq, lcko->def.duty.num,
lcko->def.duty.den, lcko->def.phase);
LOG_DBG("Config to set:");
LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u",
lcko->ts_config.div, lcko->ts_config.freq,
lcko->ts_config.duty.num, lcko->ts_config.duty.den,
lcko->ts_config.phase, lcko->config.period_off);
LOG_DBG("Config:");
LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u",
lcko->config.div, lcko->config.freq,
lcko->config.duty.num, lcko->config.duty.den,
lcko->config.phase, lcko->config.period_off);
LOG_DBG("Divide group:");
LOG_DBG("e: %u ht: %u lt: %u nc: %u",
lcko->div.edge, lcko->div.high_time,
lcko->div.low_time, lcko->div.no_cnt);
LOG_DBG("Frac group:");
LOG_DBG("f: %u fen: %u fwff: %u fwfr: %u pmf: %u",
lcko->frac.frac, lcko->frac.frac_en, lcko->frac.frac_wf_f,
lcko->frac.frac_wf_r, lcko->frac.phase_mux_f);
LOG_DBG("Phase group:");
LOG_DBG("dt: %u pm: %u mx: %u",
lcko->phase.delay_time, lcko->phase.phase_mux, lcko->phase.mx);
}
static void litex_clk_print_all_params(void)
{
uint32_t c;
LOG_DBG("Global Config to set:");
LOG_DBG("freq: %llu mul: %u div: %u",
ldev->ts_g_config.freq, ldev->ts_g_config.mul,
ldev->ts_g_config.div);
LOG_DBG("Global Config:");
LOG_DBG("freq: %llu mul: %u div: %u",
ldev->g_config.freq, ldev->g_config.mul, ldev->g_config.div);
for (c = 0; c < ldev->nclkout; c++) {
litex_clk_print_params(&ldev->clkouts[c]);
}
}
#endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */
/* Returns raw value ready to be written into MMCM */
static inline uint16_t litex_clk_calc_DI(uint16_t DO_val, uint16_t mask,
uint16_t bitset)
{
uint16_t DI_val;
DI_val = DO_val & mask;
DI_val |= bitset;
return DI_val;
}
/* Sets calculated DI value into DI DRP register */
static int litex_clk_set_DI(uint16_t DI_val)
{
int ret;
litex_clk_set_reg(DRP_DAT_W, DI_val);
litex_clk_assert_reg(DRP_WRITE);
litex_clk_deassert_reg(DRP_WRITE);
ret = litex_clk_wait(DRP_DRDY);
return ret;
}
/*
* Change register value as specified in arguments
*
* mask: preserve or zero MMCM register bits
* by selecting 1 or 0 on desired specific mask positions
* bitset: set those bits in MMCM register which are 1 in bitset
* clk_reg_addr: internal MMCM address of control register
*
*/
static int litex_clk_change_value(uint16_t mask, uint16_t bitset,
uint8_t clk_reg_addr)
{
uint16_t DO_val, DI_val;
int ret;
litex_clk_assert_reg(DRP_RESET);
ret = litex_clk_get_DO(clk_reg_addr, &DO_val);
if (ret != 0) {
return ret;
}
DI_val = litex_clk_calc_DI(DO_val, mask, bitset);
ret = litex_clk_set_DI(DI_val);
if (ret != 0) {
return ret;
}
#ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG
DI_val = litex_clk_get_reg(DRP_DAT_W);
LOG_DBG("set 0x%x under: 0x%x", DI_val, clk_reg_addr);
#endif
litex_clk_deassert_reg(DRP_DAT_W);
litex_clk_deassert_reg(DRP_RESET);
ret = litex_clk_wait(DRP_LOCKED);
return ret;
}
/*
* Set register values for given CLKOUT
*
* clkout_nr: clock output number
* mask_regX: preserve or zero MMCM register X bits
* by selecting 1 or 0 on desired specific mask positions
* bitset_regX: set those bits in MMCM register X which are 1 in bitset
*
*/
static int litex_clk_set_clock(uint8_t clkout_nr, uint16_t mask_reg1,
uint16_t bitset_reg1, uint16_t mask_reg2,
uint16_t bitset_reg2)
{
struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init();
int ret;
if (!(mask_reg2 == FULL_REG_16 && bitset_reg2 == ZERO_REG)) {
ret = litex_clk_change_value(mask_reg2, bitset_reg2,
drp_addr.clkout[clkout_nr].reg2);
if (ret != 0) {
return ret;
}
}
if (!(mask_reg1 == FULL_REG_16 && bitset_reg1 == ZERO_REG)) {
ret = litex_clk_change_value(mask_reg1, bitset_reg1,
drp_addr.clkout[clkout_nr].reg1);
if (ret != 0) {
return ret;
}
}
return 0;
}
/* Set global divider for all CLKOUTs */
static int litex_clk_set_divreg(void)
{
int ret;
uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0,
div = ldev->ts_g_config.div;
uint16_t bitset = 0;
if (div == 1) {
no_cnt = 1;
} else {
ht = div / 2;
lt = ht;
edge = div % 2;
if (edge) {
lt += edge;
}
}
bitset = (edge << EDGE_DIVREG_POS) |
(no_cnt << NO_CNT_DIVREG_POS) |
(ht << HIGH_TIME_POS) |
(lt << LOW_TIME_POS);
ret = litex_clk_change_value(KEEP_IN_DIV, bitset, DIV_REG);
if (ret != 0) {
return ret;
}
ldev->g_config.div = div;
LOG_DBG("Global divider set to %u", div);
return 0;
}
/* Set global multiplier for all CLKOUTs */
static int litex_clk_set_mulreg(void)
{
int ret;
uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0,
mul = ldev->ts_g_config.mul;
uint16_t bitset1 = 0;
if (mul == 1) {
no_cnt = 1;
} else {
ht = mul / 2;
lt = ht;
edge = mul % 2;
if (edge) {
lt += edge;
}
}
bitset1 = (ht << HIGH_TIME_POS) |
(lt << LOW_TIME_POS);
ret = litex_clk_change_value(KEEP_IN_MUL_REG1, bitset1, CLKFBOUT_REG1);
if (ret != 0) {
return ret;
}
if (edge || no_cnt) {
uint16_t bitset2 = (edge << EDGE_POS) |
(no_cnt << NO_CNT_POS);
ret = litex_clk_change_value(KEEP_IN_MUL_REG2,
bitset2, CLKFBOUT_REG2);
if (ret != 0) {
return ret;
}
}
ldev->g_config.mul = mul;
LOG_DBG("Global multiplier set to %u", mul);
return 0;
}
static int litex_clk_set_filt(void)
{
uint16_t filt_reg;
uint32_t filt, mul;
int ret;
mul = ldev->g_config.mul;
filt = litex_clk_lookup_filter(mul);
/*
* Preparing and setting filter register values
* according to reg map form Xilinx XAPP888
*/
filt_reg = (((filt >> 9) & 0x1) << 15) |
(((filt >> 7) & 0x3) << 11) |
(((filt >> 6) & 0x1) << 8);
ret = litex_clk_change_value(FILT1_MASK, filt_reg, FILT_REG1);
if (ret != 0) {
return ret;
}
filt_reg = (((filt >> 5) & 0x1) << 15) |
(((filt >> 3) & 0x3) << 11) |
(((filt >> 1) & 0x3) << 7) |
(((filt) & 0x1) << 4);
ret = litex_clk_change_value(FILT2_MASK, filt_reg, FILT_REG2);
return ret;
}
static int litex_clk_set_lock(void)
{
uint16_t lock_reg;
uint32_t mul;
uint64_t lock;
int ret;
mul = ldev->g_config.mul;
lock = litex_clk_lookup_lock(mul);
/*
* Preparing and setting lock register values
* according to reg map form Xilinx XAPP888
*/
lock_reg = (lock >> 20) & 0x3FF;
ret = litex_clk_change_value(LOCK1_MASK, lock_reg, LOCK_REG1);
if (ret != 0) {
return ret;
}
lock_reg = (((lock >> 30) & 0x1F) << 10) |
(lock & 0x3FF);
ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG2);
if (ret != 0) {
return ret;
}
lock_reg = (((lock >> 35) & 0x1F) << 10) |
((lock >> 10) & 0x3FF);
ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG3);
return ret;
}
/* Set all multiplier-related regs: mul, filt and lock regs */
static int litex_clk_set_mul(void)
{
int ret;
ret = litex_clk_set_mulreg();
if (ret != 0) {
return ret;
}
ret = litex_clk_set_filt();
if (ret != 0) {
return ret;
}
ret = litex_clk_set_lock();
return ret;
}
static int litex_clk_set_both_globs(void)
{
/*
* we need to check what change first to prevent
* getting our VCO_FREQ out of possible range
*/
uint64_t vco_freq;
int ret;
/* div-first case */
vco_freq = litex_clk_calc_global_frequency(
ldev->g_config.mul,
ldev->ts_g_config.div);
if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) {
/* div-first not safe */
vco_freq = litex_clk_calc_global_frequency(
ldev->ts_g_config.mul,
ldev->g_config.div);
if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) {
/* mul-first not safe */
ret = litex_clk_set_divreg();
/* Ignore timeout because we expect that to happen */
if (ret != -ETIME && ret != 0) {
return ret;
} else if (ret == -ETIME) {
ldev->g_config.div = ldev->ts_g_config.div;
LOG_DBG("Global divider set to %u",
ldev->g_config.div);
}
ret = litex_clk_set_mul();
if (ret != 0) {
return ret;
}
} else {
/* mul-first safe */
ret = litex_clk_set_mul();
if (ret != 0) {
return ret;
}
ret = litex_clk_set_divreg();
if (ret != 0) {
return ret;
}
}
} else {
/* div-first safe */
ret = litex_clk_set_divreg();
if (ret != 0) {
return ret;
}
ret = litex_clk_set_mul();
if (ret != 0) {
return ret;
}
}
return 0;
}
/* Set global divider, multiplier, filt and lock values */
static int litex_clk_set_globs(void)
{
int ret;
uint8_t set_div = 0,
set_mul = 0;
set_div = ldev->ts_g_config.div != ldev->g_config.div;
set_mul = ldev->ts_g_config.mul != ldev->g_config.mul;
if (set_div || set_mul) {
if (set_div && set_mul) {
ret = litex_clk_set_both_globs();
if (ret != 0) {
return ret;
}
} else if (set_div) {
/* set divider only */
ret = litex_clk_set_divreg();
if (ret != 0) {
return ret;
}
} else {
/* set multiplier only */
ret = litex_clk_set_mul();
if (ret != 0) {
return ret;
}
}
ldev->g_config.freq = ldev->ts_g_config.freq;
}
return 0;
}
/* Round scaled value*/
static inline uint32_t litex_round(uint32_t val, uint32_t mod)
{
if (val % mod > mod / 2) {
return val / mod + 1;
}
return val / mod;
}
/*
* Duty Cycle
*/
/* Returns accurate duty ratio of given clkout*/
int litex_clk_get_duty_cycle(struct litex_clk_clkout *lcko,
struct clk_duty *duty)
{
struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init();
int ret;
uint32_t divider;
uint16_t clkout_reg1, clkout_reg2;
uint8_t clkout_nr, high_time, edge, no_cnt, frac_en, frac_cnt;
clkout_nr = lcko->id;
/* Check if divider is off */
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &clkout_reg2);
if (ret != 0) {
return ret;
}
edge = (clkout_reg2 >> EDGE_POS) & EDGE_MASK;
no_cnt = (clkout_reg2 >> NO_CNT_POS) & NO_CNT_MASK;
frac_en = (clkout_reg2 >> FRAC_EN_POS) & FRAC_EN_MASK;
frac_cnt = (clkout_reg2 >> FRAC_POS) & FRAC_MASK;
/* get duty 50% when divider is off or fractional is enabled */
if (no_cnt || (frac_en && frac_cnt)) {
duty->num = 1;
duty->den = 2;
return 0;
}
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &clkout_reg1);
if (ret != 0) {
return ret;
}
divider = clkout_reg1 & HL_TIME_MASK;
high_time = (clkout_reg1 >> HIGH_TIME_POS) & HL_TIME_MASK;
divider += high_time;
/* Scaling to consider edge control bit */
duty->num = high_time * 10 + edge * 5;
duty->den = (divider + edge) * 10;
return 0;
}
/* Calculates duty cycle for given ratio in percent, 1% accuracy */
static inline uint8_t litex_clk_calc_duty_percent(struct clk_duty *duty)
{
uint32_t div, duty_ratio, ht;
ht = duty->num;
div = duty->den;
duty_ratio = ht * 10000 / div;
return (uint8_t)litex_round(duty_ratio, 100);
}
/* Calculate necessary values for setting duty cycle in normal mode */
static int litex_clk_calc_duty_normal(struct litex_clk_clkout *lcko,
int calc_new)
{
struct clk_duty duty;
int delta_d;
uint32_t ht_aprox, synth_duty, min_d;
uint8_t high_time_it, edge_it, high_duty,
divider = lcko->config.div;
if (calc_new) {
duty = lcko->ts_config.duty;
} else {
litex_clk_get_duty_cycle(lcko, &duty);
}
high_duty = litex_clk_calc_duty_percent(&duty);
min_d = INT_MAX;
/* check if duty is available to set */
ht_aprox = high_duty * divider;
if (ht_aprox > ((HIGH_LOW_TIME_REG_MAX * 100) + 50) ||
((HIGH_LOW_TIME_REG_MAX * 100) + 50) <
(divider * 100) - ht_aprox) {
return -EINVAL;
}
/* to prevent high_time == 0 or low_time == 0 */
for (high_time_it = 1; high_time_it < divider; high_time_it++) {
for (edge_it = 0; edge_it < 2; edge_it++) {
synth_duty = (high_time_it * 100 + 50 * edge_it) /
divider;
delta_d = synth_duty - high_duty;
delta_d = abs(delta_d);
/* check if low_time won't be above acceptable range */
if (delta_d < min_d && (divider - high_time_it) <=
HIGH_LOW_TIME_REG_MAX) {
min_d = delta_d;
lcko->div.high_time = high_time_it;
lcko->div.low_time = divider - high_time_it;
lcko->div.edge = edge_it;
lcko->config.duty.num = high_time_it * 100 + 50
* edge_it;
lcko->config.duty.den = divider * 100;
}
}
}
/*
* Calculating values in normal mode,
* clear control bits of fractional part
*/
lcko->frac.frac_wf_f = 0;
lcko->frac.frac_wf_r = 0;
return 0;
}
/* Calculates duty high_time for given divider and ratio */
static inline int litex_clk_calc_duty_high_time(struct clk_duty *duty,
uint32_t divider)
{
uint32_t high_duty;
high_duty = litex_clk_calc_duty_percent(duty) * divider;
return litex_round(high_duty, 100);
}
/* Set duty cycle with given ratio */
static int litex_clk_set_duty_cycle(struct litex_clk_clkout *lcko,
struct clk_duty *duty)
{
int ret;
uint16_t bitset1, bitset2;
uint8_t clkout_nr = lcko->id,
*edge = &lcko->div.edge,
*high_time = &lcko->div.high_time,
high_duty = litex_clk_calc_duty_percent(duty),
*low_time = &lcko->div.low_time;
if (lcko->frac.frac == 0) {
int ret;
lcko->ts_config.duty = *duty;
LOG_DBG("CLKOUT%d: setting duty: %u/%u",
lcko->id, duty->num, duty->den);
ret = litex_clk_calc_duty_normal(lcko, true);
if (ret != 0) {
LOG_ERR("CLKOUT%d: cannot set %d%% duty cycle",
clkout_nr, high_duty);
return ret;
}
} else {
LOG_ERR("CLKOUT%d: cannot set duty cycle when fractional divider enabled",
clkout_nr);
return -EACCES;
}
bitset1 = (*high_time << HIGH_TIME_POS) |
(*low_time << LOW_TIME_POS);
bitset2 = (*edge << EDGE_POS);
LOG_DBG("SET DUTY CYCLE: e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x",
*edge, *high_time, *low_time, bitset1, bitset2);
ret = litex_clk_set_clock(clkout_nr, REG1_DUTY_MASK, bitset1,
REG2_DUTY_MASK, bitset2);
if (ret != 0) {
return ret;
}
LOG_INF("CLKOUT%d: set duty: %d%%", lcko->id,
litex_clk_calc_duty_percent(&lcko->config.duty));
return 0;
}
/*
* Phase
*/
/* Calculate necessary values for setting phase in normal mode */
static int litex_clk_calc_phase_normal(struct litex_clk_clkout *lcko)
{
uint64_t period_buff;
uint32_t post_glob_div_f, global_period, clkout_period,
*period_off = &lcko->ts_config.period_off;
uint8_t divider = lcko->config.div;
/* ps unit */
post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency();
period_buff = PICOS_IN_SEC;
period_buff /= post_glob_div_f;
global_period = (uint32_t)period_buff;
clkout_period = global_period * divider;
if (lcko->ts_config.phase != 0) {
int synth_phase, delta_p, min_p, p_o;
uint8_t delay, p_m;
*period_off = litex_round(clkout_period * (*period_off), 10000);
if (*period_off / global_period > DELAY_TIME_MAX) {
return -EINVAL;
}
min_p = INT_MAX;
p_o = *period_off;
/* Delay_time: (0-63) */
for (delay = 0; delay <= DELAY_TIME_MAX; delay++) {
/* phase_mux: (0-7) */
for (p_m = 0; p_m <= PHASE_MUX_MAX; p_m++) {
synth_phase = (delay * global_period) +
((p_m * ((global_period * 100) / 8) / 100));
delta_p = synth_phase - p_o;
delta_p = abs(delta_p);
if (delta_p < min_p) {
min_p = delta_p;
lcko->phase.phase_mux = p_m;
lcko->phase.delay_time = delay;
lcko->config.period_off = synth_phase;
}
}
}
} else {
/* Don't change phase offset*/
lcko->phase.phase_mux = 0;
lcko->phase.delay_time = 0;
}
/*
* Calculating values in normal mode,
* fractional control bits need to be zero
*/
lcko->frac.phase_mux_f = 0;
return 0;
}
/* Convert phase offset to positive lower than 360 deg. and calculate period */
static int litex_clk_prepare_phase(struct litex_clk_clkout *lcko)
{
int *phase = &lcko->ts_config.phase;
*phase %= 360;
if (*phase < 0) {
*phase += 360;
}
lcko->ts_config.period_off = ((*phase * 10000) / 360);
return 0;
}
/* Calculate necessary values for setting phase */
static int litex_clk_calc_phase(struct litex_clk_clkout *lcko)
{
litex_clk_prepare_phase(lcko);
return litex_clk_calc_phase_normal(lcko);
}
/* Returns phase-specific values of given clock output */
static int litex_clk_get_phase_data(struct litex_clk_clkout *lcko,
uint8_t *phase_mux, uint8_t *delay_time)
{
struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init();
int ret;
uint16_t r1, r2;
uint8_t clkout_nr = lcko->id;
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &r1);
if (ret != 0) {
return ret;
}
ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &r2);
if (ret != 0) {
return ret;
}
*phase_mux = (r1 >> PHASE_MUX_POS) & PHASE_MUX_MASK;
*delay_time = (r2 >> DELAY_TIME_POS) & HL_TIME_MASK;
return 0;
}
/* Returns phase of given clock output in time offset */
int litex_clk_get_phase(struct litex_clk_clkout *lcko)
{
uint64_t period_buff;
uint32_t divider = 0, fract_cnt, post_glob_div_f,
pm, global_period, clkout_period, period;
uint8_t phase_mux = 0, delay_time = 0;
litex_clk_get_phase_data(lcko, &phase_mux, &delay_time);
litex_clk_get_clkout_divider(lcko, &divider, &fract_cnt);
post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency();
period_buff = PICOS_IN_SEC;
period_buff /= post_glob_div_f;
/* ps unit */
global_period = (uint32_t)period_buff;
clkout_period = global_period * divider;
pm = (phase_mux * global_period * 1000) / PHASE_MUX_RES_FACTOR;
pm = litex_round(pm, 1000);
period = delay_time * global_period + pm;
period = period * 1000 / clkout_period;
period = period * 360;
return litex_round(period, 1000);
}
/* Returns phase of given clock output in degrees */
int litex_clk_get_phase_deg(struct litex_clk_clkout *lcko)
{
uint64_t post_glob_div_f, buff, clkout_period;
post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency();
buff = PICOS_IN_SEC;
buff /= post_glob_div_f;
clkout_period = (uint32_t)buff;
clkout_period *= lcko->config.div;
buff = lcko->config.period_off * 1000 / clkout_period;
buff *= 360;
buff = litex_round(buff, 1000);
return (int)buff;
}
/* Sets phase given in degrees on given clock output */
int litex_clk_set_phase(struct litex_clk_clkout *lcko, int degrees)
{
int ret;
uint16_t bitset1, bitset2, reg2_mask;
uint8_t *phase_mux = &lcko->phase.phase_mux,
*delay_time = &lcko->phase.delay_time,
clkout_nr = lcko->id;
lcko->ts_config.phase = degrees;
reg2_mask = REG2_PHASE_MASK;
LOG_DBG("CLKOUT%d: setting phase: %u deg", lcko->id, degrees);
ret = litex_clk_calc_phase(lcko);
if (ret != 0) {
LOG_ERR("CLKOUT%d: phase offset %d deg is too high",
clkout_nr, degrees);
return ret;
}
bitset1 = (*phase_mux << PHASE_MUX_POS);
bitset2 = (*delay_time << DELAY_TIME_POS);
ret = litex_clk_set_clock(clkout_nr, REG1_PHASE_MASK, bitset1,
reg2_mask, bitset2);
if (ret != 0) {
return ret;
}
lcko->config.phase = litex_clk_get_phase_deg(lcko);
LOG_INF("CLKOUT%d: set phase: %d deg", lcko->id, lcko->config.phase);
LOG_DBG("SET PHASE: pm:%u dt:%u\nbitset1: 0x%x bitset2: 0x%x",
*phase_mux, *delay_time, bitset1, bitset2);
return 0;
}
/*
* Frequency
*/
/* Returns rate in Hz */
static inline uint32_t litex_clk_calc_rate(struct litex_clk_clkout *lcko)
{
uint64_t f = litex_clk_calc_global_frequency(ldev->ts_g_config.mul,
ldev->ts_g_config.div);
f /= lcko->config.div;
return (uint32_t)f;
}
/*
* Written since there is no pow() in math.h. Only for exponent
* and base above 0. Used for calculating scaling factor for
* frequency margin
*
*/
static uint32_t litex_clk_pow(uint32_t base, uint32_t exp)
{
int ret = 1;
while (exp--) {
ret *= base;
}
return ret;
}
/* Returns true when possible to set frequency with given global settings */
static int litex_clk_calc_clkout_params(struct litex_clk_clkout *lcko,
uint64_t vco_freq)
{
int delta_f;
uint64_t m, clk_freq = 0;
uint32_t d, margin = 1;
if (lcko->margin.exp) {
margin = litex_clk_pow(10, lcko->margin.exp);
}
lcko->div.no_cnt = 0;
for (d = lcko->clkout_div.min; d <= lcko->clkout_div.max; d++) {
clk_freq = vco_freq;
clk_freq /= d;
m = lcko->ts_config.freq * lcko->margin.m;
/* Scale margin according to its exponent */
if (lcko->margin.exp) {
m /= margin;
}
delta_f = clk_freq - lcko->ts_config.freq;
delta_f = abs(delta_f);
if (delta_f <= m) {
lcko->config.freq = (uint32_t)clk_freq;
if (lcko->config.div != d) {
ldev->update_clkout[lcko->id] = 1;
}
lcko->config.div = d;
/* for sake of completeness */
lcko->ts_config.div = d;
/* we are not using fractional divider */
lcko->frac.frac_en = 0;
lcko->frac.frac = 0;
if (d == 1) {
lcko->div.no_cnt = 1;
}
LOG_DBG("CLKOUT%d: freq:%u div:%u gdiv:%u gmul:%u",
lcko->id, lcko->config.freq, lcko->config.div,
ldev->ts_g_config.div, ldev->ts_g_config.mul);
return true;
}
}
return false;
}
/* Compute dividers for all active clock outputs */
static int litex_clk_calc_all_clkout_params(uint64_t vco_freq)
{
struct litex_clk_clkout *lcko;
uint32_t c;
for (c = 0; c < ldev->nclkout; c++) {
lcko = &ldev->clkouts[c];
if (!litex_clk_calc_clkout_params(lcko, vco_freq)) {
return false;
}
}
return true;
}
/* Calculate parameters for whole active part of MMCM */
static int litex_clk_calc_all_params(void)
{
uint32_t div, mul;
uint64_t vco_freq = 0;
for (div = ldev->divclk.min; div <= ldev->divclk.max; div++) {
ldev->ts_g_config.div = div;
for (mul = ldev->clkfbout.max; mul >= ldev->clkfbout.min;
mul--) {
int bellow, above, all_valid = true;
vco_freq = (uint64_t)ldev->sys_clk_freq * (uint64_t)mul;
vco_freq /= div;
bellow = vco_freq < (ldev->vco.min
* (1 + ldev->vco_margin));
above = vco_freq > (ldev->vco.max
* (1 - ldev->vco_margin));
if (!bellow && !above) {
all_valid = litex_clk_calc_all_clkout_params
(vco_freq);
if (all_valid) {
ldev->ts_g_config.mul = mul;
ldev->ts_g_config.freq = vco_freq;
LOG_DBG("GLOBAL: freq:%llu g_div:%u g_mul:%u",
ldev->ts_g_config.freq,
ldev->ts_g_config.div,
ldev->ts_g_config.mul);
return 0;
}
}
}
}
LOG_ERR("Cannot find correct settings for all clock outputs!");
return -ENOTSUP;
}
int litex_clk_check_rate_range(struct litex_clk_clkout *lcko, uint32_t rate)
{
uint64_t max, min, m;
uint32_t div, margin;
m = rate * lcko->margin.m;
if (lcko->margin.exp) {
margin = litex_clk_pow(10, lcko->margin.exp);
}
max = (uint64_t)ldev->sys_clk_freq * (uint64_t)ldev->clkfbout.max;
div = ldev->divclk.min * lcko->clkout_div.min;
max /= div;
max += m;
min = ldev->sys_clk_freq * ldev->clkfbout.min;
div = ldev->divclk.max * lcko->clkout_div.max;
min /= div;
if (min < m) {
min = 0;
} else {
min -= m;
}
if ((uint64_t)rate < min || (uint64_t)rate > max) {
return -EINVAL;
}
return 0;
}
/* Returns closest available clock rate in Hz */
long litex_clk_round_rate(struct litex_clk_clkout *lcko, unsigned long rate)
{
int ret;
ret = litex_clk_check_rate_range(lcko, rate);
if (ret != 0) {
return -EINVAL;
}
lcko->ts_config.freq = rate;
ret = litex_clk_calc_all_params();
if (ret != 0) {
return ret;
}
return litex_clk_calc_rate(lcko);
}
int litex_clk_write_rate(struct litex_clk_clkout *lcko)
{
int ret;
uint16_t bitset1, bitset2;
uint8_t *divider = &lcko->config.div,
*edge = &lcko->div.edge,
*high_time = &lcko->div.high_time,
*low_time = &lcko->div.low_time,
*no_cnt = &lcko->div.no_cnt,
*frac = &lcko->frac.frac,
*frac_en = &lcko->frac.frac_en,
*frac_wf_r = &lcko->frac.frac_wf_r;
bitset1 = (*high_time << HIGH_TIME_POS) |
(*low_time << LOW_TIME_POS);
bitset2 = (*frac << FRAC_POS) |
(*frac_en << FRAC_EN_POS) |
(*frac_wf_r << FRAC_WF_R_POS) |
(*edge << EDGE_POS) |
(*no_cnt << NO_CNT_POS);
LOG_DBG("SET RATE: div:%u f:%u fwfr:%u fen:%u nc:%u e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x",
*divider, *frac, *frac_wf_r, *frac_en,
*no_cnt, *edge, *high_time, *low_time, bitset1, bitset2);
ret = litex_clk_set_clock(lcko->id, REG1_FREQ_MASK, bitset1,
REG2_FREQ_MASK, bitset2);
if (ret != 0) {
return ret;
}
ldev->update_clkout[lcko->id] = 0;
return 0;
}
int litex_clk_update_clkouts(void)
{
struct litex_clk_clkout *lcko;
int ret;
uint8_t c;
for (c = 0; c < ldev->nclkout; c++) {
if (ldev->update_clkout[c]) {
lcko = &ldev->clkouts[c];
ret = litex_clk_calc_duty_normal(lcko, false);
if (ret != 0) {
return ret;
}
ret = litex_clk_write_rate(lcko);
if (ret != 0) {
return ret;
}
LOG_INF("CLKOUT%d: updated rate: %u to %u HZ",
lcko->id, lcko->ts_config.freq,
lcko->config.freq);
}
}
return 0;
}
/* Set closest available clock rate in Hz, parent_rate ignored */
int litex_clk_set_rate(struct litex_clk_clkout *lcko, unsigned long rate)
{
int ret;
LOG_DBG("CLKOUT%d: setting rate: %lu", lcko->id, rate);
ret = litex_clk_round_rate(lcko, rate);
if (ret < 0) {
return ret;
}
ret = litex_clk_set_globs();
if (ret != 0) {
return ret;
}
ret = litex_clk_calc_duty_normal(lcko, false);
if (ret != 0) {
return ret;
}
ret = litex_clk_write_rate(lcko);
if (ret != 0) {
return ret;
}
LOG_INF("CLKOUT%d: set rate: %u HZ", lcko->id, lcko->config.freq);
ret = litex_clk_update_clkouts();
if (ret != 0) {
return ret;
}
#ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG
litex_clk_print_all_params();
litex_clk_print_all_regs();
#endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */
return 0;
}
/* Set default clock value from device tree for given clkout*/
static int litex_clk_set_def_clkout(int clkout_nr)
{
struct litex_clk_clkout *lcko = &ldev->clkouts[clkout_nr];
int ret;
ret = litex_clk_set_rate(lcko, lcko->def.freq);
if (ret != 0) {
return ret;
}
ret = litex_clk_set_duty_cycle(lcko, &lcko->def.duty);
if (ret != 0) {
return ret;
}
return litex_clk_set_phase(lcko, lcko->def.phase);
}
static int litex_clk_set_all_def_clkouts(void)
{
int c, ret;
for (c = 0; c < ldev->nclkout; c++) {
ret = litex_clk_set_def_clkout(c);
if (ret != 0) {
return ret;
}
}
return 0;
}
/*
* Returns parameters of given clock output
*
* clock: device structure for driver
* sub_system: pointer to struct litex_clk_clkout
* casted to clock_control_subsys with
* all clkout parameters
*/
static int litex_clk_get_subsys_rate(const struct device *clock,
clock_control_subsys_t sys, uint32_t *rate)
{
struct litex_clk_setup *setup = sys;
struct litex_clk_clkout *lcko;
lcko = &ldev->clkouts[setup->clkout_nr];
*rate = litex_clk_calc_rate(lcko);
return 0;
}
static enum clock_control_status litex_clk_get_status(const struct device *dev,
clock_control_subsys_t sys)
{
struct litex_clk_setup *setup = sys;
struct clk_duty duty;
struct litex_clk_clkout *lcko;
int ret;
lcko = &ldev->clkouts[setup->clkout_nr];
setup->rate = litex_clk_calc_rate(lcko);
ret = litex_clk_get_duty_cycle(lcko, &duty);
if (ret != 0) {
return ret;
}
setup->duty = litex_clk_calc_duty_percent(&duty);
setup->phase = litex_clk_get_phase(lcko);
return CLOCK_CONTROL_STATUS_ON;
}
static inline int litex_clk_on(const struct device *dev, clock_control_subsys_t sys)
{
struct litex_clk_setup *setup = sys;
struct clk_duty duty;
struct litex_clk_clkout *lcko;
uint8_t duty_perc;
int ret;
lcko = &ldev->clkouts[setup->clkout_nr];
if (lcko->config.freq != setup->rate) {
ret = litex_clk_set_rate(lcko, setup->rate);
if (ret != 0) {
return ret;
}
}
if (lcko->config.phase != setup->phase) {
ret = litex_clk_set_phase(lcko, setup->phase);
if (ret != 0) {
return ret;
}
}
duty_perc = litex_clk_calc_duty_percent(&lcko->config.duty);
if (duty_perc != setup->duty) {
duty.num = setup->duty;
duty.den = 100;
ret = litex_clk_set_duty_cycle(lcko, &duty);
if (ret != 0) {
return ret;
}
}
return 0;
}
static inline int litex_clk_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
return litex_clk_change_value(ZERO_REG, ZERO_REG, POWER_REG);
}
static const struct clock_control_driver_api litex_clk_api = {
.on = litex_clk_on,
.off = litex_clk_off,
.get_rate = litex_clk_get_subsys_rate,
.get_status = litex_clk_get_status
};
static void litex_clk_dts_clkout_ranges_read(struct litex_clk_range *clkout_div)
{
clkout_div->min = CLKOUT_DIVIDE_MIN;
clkout_div->max = CLKOUT_DIVIDE_MAX;
}
static int litex_clk_dts_timeout_read(struct litex_clk_timeout *timeout)
{
/* Read wait_lock timeout from device property*/
timeout->lock = LOCK_TIMEOUT;
if (timeout->lock < 1) {
LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n");
return -EINVAL;
}
/* Read wait_drdy timeout from device property*/
timeout->drdy = DRDY_TIMEOUT;
if (timeout->drdy < 1) {
LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n");
return -EINVAL;
}
return 0;
}
static int litex_clk_dts_clkouts_read(void)
{
struct litex_clk_range clkout_div;
struct litex_clk_clkout *lcko;
litex_clk_dts_clkout_ranges_read(&clkout_div);
#if CLKOUT_EXIST(0) == 1
CLKOUT_INIT(0)
#endif
#if CLKOUT_EXIST(1) == 1
CLKOUT_INIT(1)
#endif
#if CLKOUT_EXIST(2) == 1
CLKOUT_INIT(2)
#endif
#if CLKOUT_EXIST(3) == 1
CLKOUT_INIT(3)
#endif
#if CLKOUT_EXIST(4) == 1
CLKOUT_INIT(4)
#endif
#if CLKOUT_EXIST(5) == 1
CLKOUT_INIT(5)
#endif
#if CLKOUT_EXIST(6) == 1
CLKOUT_INIT(6)
#endif
return 0;
}
static void litex_clk_init_clkouts(void)
{
struct litex_clk_clkout *lcko;
int i;
for (i = 0; i < ldev->nclkout; i++) {
lcko = &ldev->clkouts[i];
lcko->base = ldev->base;
/* mark defaults to set */
lcko->ts_config.freq = lcko->def.freq;
lcko->ts_config.duty = lcko->def.duty;
lcko->ts_config.phase = lcko->def.phase;
}
}
static int litex_clk_dts_cnt_clocks(void)
{
return NCLKOUT;
}
static void litex_clk_dts_global_ranges_read(void)
{
ldev->divclk.min = DIVCLK_DIVIDE_MIN;
ldev->divclk.max = DIVCLK_DIVIDE_MAX;
ldev->clkfbout.min = CLKFBOUT_MULT_MIN;
ldev->clkfbout.max = CLKFBOUT_MULT_MAX;
ldev->vco.min = VCO_FREQ_MIN;
ldev->vco.max = VCO_FREQ_MAX;
ldev->vco_margin = VCO_MARGIN;
}
static int litex_clk_dts_global_read(void)
{
int ret;
ldev->sys_clk_freq = SYS_CLOCK_FREQUENCY;
ldev->nclkout = litex_clk_dts_cnt_clocks();
clkouts = k_malloc(sizeof(struct litex_clk_clkout) * ldev->nclkout);
ldev->update_clkout = k_malloc(sizeof(uint8_t) * ldev->nclkout);
if (!clkouts || !ldev->update_clkout) {
LOG_ERR("CLKOUT memory allocation failure!");
return -ENOMEM;
}
ldev->clkouts = clkouts;
ret = litex_clk_dts_timeout_read(&ldev->timeout);
if (ret != 0) {
return ret;
}
litex_clk_dts_global_ranges_read();
return 0;
}
static int litex_clk_init_glob_clk(void)
{
int ret;
/* Power on MMCM module */
ret = litex_clk_change_value(FULL_REG_16, FULL_REG_16, POWER_REG);
if (ret != 0) {
LOG_ERR("MMCM initialization failure, ret: %d", ret);
return ret;
}
return 0;
}
/* Enable module, set global divider, multiplier, default clkout parameters */
static int litex_clk_init(const struct device *dev)
{
int ret;
ldev = k_malloc(sizeof(struct litex_clk_device));
if (ldev == NULL) {
return -ENOMEM;
}
ldev->base = (uint32_t *)DRP_BASE;
if (ldev->base == NULL) {
return -EIO;
}
ret = litex_clk_dts_global_read();
if (ret != 0) {
return ret;
}
ret = litex_clk_dts_clkouts_read();
if (ret != 0) {
return ret;
}
litex_clk_init_clkouts();
ret = litex_clk_init_glob_clk();
if (ret != 0) {
return ret;
}
ret = litex_clk_set_all_def_clkouts();
if (ret != 0) {
return ret;
}
#ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG
litex_clk_print_all_params();
litex_clk_print_all_regs();
#endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */
LOG_INF("LiteX Clock Control driver initialized");
return 0;
}
static const struct litex_clk_device ldev_init = {
.base = (uint32_t *)DRP_BASE,
.timeout = {LOCK_TIMEOUT, DRDY_TIMEOUT},
.divclk = {DIVCLK_DIVIDE_MIN, DIVCLK_DIVIDE_MAX},
.clkfbout = {CLKFBOUT_MULT_MIN, CLKFBOUT_MULT_MAX},
.vco = {VCO_FREQ_MIN, VCO_FREQ_MAX},
.sys_clk_freq = SYS_CLOCK_FREQUENCY,
.vco_margin = VCO_MARGIN,
.nclkout = NCLKOUT
};
DEVICE_DT_DEFINE(DT_NODELABEL(clock0), &litex_clk_init, NULL,
NULL, &ldev_init, POST_KERNEL,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &litex_clk_api);