zephyr/drivers/flash/flash_esp32.c

848 lines
20 KiB
C

/*
* Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32_flash_controller
#define SOC_NV_FLASH_NODE DT_INST(0, soc_nv_flash)
#define FLASH_WRITE_BLK_SZ DT_PROP(SOC_NV_FLASH_NODE, write_block_size)
#define FLASH_ERASE_BLK_SZ DT_PROP(SOC_NV_FLASH_NODE, erase_block_size)
/*
* HAL includes go first to
* avoid BIT macro redefinition
*/
#include <esp_spi_flash.h>
#include <hal/spi_ll.h>
#include <hal/spi_flash_ll.h>
#include <hal/spi_flash_hal.h>
#include <soc/spi_struct.h>
#include <spi_flash_defs.h>
#include <kernel.h>
#include <device.h>
#include <stddef.h>
#include <string.h>
#include <errno.h>
#include <drivers/flash.h>
#include <soc.h>
#if defined(CONFIG_SOC_ESP32)
#include "soc/dport_reg.h"
#include "esp32/rom/cache.h"
#include "esp32/rom/spi_flash.h"
#include "esp32/spiram.h"
#elif defined(CONFIG_SOC_ESP32S2)
#include "soc/spi_mem_reg.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/spi_flash.h"
#elif defined(CONFIG_SOC_ESP32C3)
#include "soc/spi_periph.h"
#include "soc/spi_mem_reg.h"
#include "soc/dport_access.h"
#include "esp32c3/dport_access.h"
#include "esp32c3/rom/cache.h"
#include "esp32c3/rom/spi_flash.h"
#endif
#include "soc/mmu.h"
#include <logging/log.h>
LOG_MODULE_REGISTER(flash_esp32, CONFIG_FLASH_LOG_LEVEL);
struct flash_esp32_dev_config {
spi_dev_t *controller;
esp_rom_spiflash_chip_t *chip;
};
struct flash_esp32_dev_data {
struct k_sem sem;
};
static const struct flash_parameters flash_esp32_parameters = {
.write_block_size = FLASH_WRITE_BLK_SZ,
.erase_value = 0xff,
};
#if !defined(CONFIG_SOC_ESP32C3)
#define SPI1_EXTRA_DUMMIES (g_rom_spiflash_dummy_len_plus[1])
#else
#define SPI1_EXTRA_DUMMIES ((uint8_t)((rom_spiflash_legacy_data->dummy_len_plus)[1]))
#define SPI_FREAD_QIO 0
#define SPI_FREAD_DIO 0
#endif
#define MAX_BUFF_ALLOC_RETRIES 5
#define MAX_READ_CHUNK 16384
#define MAX_WRITE_CHUNK 8192
#define ADDRESS_MASK_24BIT 0xFFFFFF
#define SPI_TIMEOUT_MSEC 500
#if defined(CONFIG_SOC_ESP32)
#define HOST_FLASH_CONTROLLER SPI0
#define HOST_FLASH_RDSR SPI_FLASH_RDSR
#define HOST_FLASH_FASTRD SPI_FASTRD_MODE
#elif defined(CONFIG_SOC_ESP32S2) || defined(CONFIG_SOC_ESP32C3)
#define HOST_FLASH_CONTROLLER SPIMEM0
#define HOST_FLASH_RDSR SPI_MEM_FLASH_RDSR
#define HOST_FLASH_FASTRD SPI_MEM_FASTRD_MODE
#endif
#if defined(CONFIG_SOC_ESP32C3)
static esp_rom_spiflash_chip_t esp_flashchip_info;
#else
#define esp_flashchip_info g_rom_flashchip
#endif
static inline void flash_esp32_sem_take(const struct device *dev)
{
struct flash_esp32_dev_data *data = dev->data;
k_sem_take(&data->sem, K_FOREVER);
}
static inline void flash_esp32_sem_give(const struct device *dev)
{
struct flash_esp32_dev_data *data = dev->data;
k_sem_give(&data->sem);
}
static inline int flash_esp32_wait_cmd_done(const spi_dev_t *hw)
{
int64_t timeout = k_uptime_get() + SPI_TIMEOUT_MSEC;
while (!spi_flash_ll_cmd_is_done(hw)) {
if (k_uptime_get() > timeout) {
LOG_ERR("controller has timed out");
return -ETIMEDOUT;
}
}
return 0;
}
static inline bool points_to_dram(const void *ptr)
{
return ((intptr_t)ptr >= SOC_DRAM_LOW && (intptr_t)ptr < SOC_DRAM_HIGH);
}
int configure_read_mode(spi_dev_t *hw,
uint32_t cmd,
uint32_t addr_bitlen,
int dummy_len,
bool byte_cmd)
{
if (dummy_len) {
spi_flash_ll_set_dummy(hw, dummy_len);
}
spi_flash_ll_set_addr_bitlen(hw, addr_bitlen);
if (!byte_cmd) {
REG_SET_FIELD(PERIPHS_SPI_FLASH_USRREG2, SPI_USR_COMMAND_VALUE, cmd);
} else {
spi_flash_ll_set_command(hw, (uint8_t) cmd, 8);
}
return 0;
}
static bool IRAM_ATTR flash_esp32_mapped_in_cache(uint32_t phys_page, const void **out_ptr)
{
int start[2], end[2];
*out_ptr = NULL;
/* SPI_FLASH_MMAP_DATA */
start[0] = SOC_MMU_DROM0_PAGES_START;
end[0] = SOC_MMU_DROM0_PAGES_END;
/* SPI_FLASH_MMAP_INST */
start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE;
end[1] = SOC_MMU_IROM0_PAGES_END;
DPORT_INTERRUPT_DISABLE();
for (int j = 0; j < 2; j++) {
for (int i = start[j]; i < end[j]; i++) {
if (DPORT_SEQUENCE_REG_READ(
(uint32_t)&SOC_MMU_DPORT_PRO_FLASH_MMU_TABLE[i]) ==
SOC_MMU_PAGE_IN_FLASH(phys_page)) {
#if !defined(CONFIG_SOC_ESP32)
if (j == 0) { /* SPI_FLASH_MMAP_DATA */
*out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR +
SPI_FLASH_MMU_PAGE_SIZE * (i - start[0]));
} else {
*out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR +
SPI_FLASH_MMU_PAGE_SIZE * (i - start[1]));
}
#endif
DPORT_INTERRUPT_RESTORE();
return true;
}
}
}
DPORT_INTERRUPT_RESTORE();
return false;
}
/* Validates if flash address has corresponding cache mapping, if yes, flushes cache memories */
static void IRAM_ATTR flash_esp32_flush_cache(size_t start_addr, size_t length)
{
/* align start_addr & length to full MMU pages */
uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
length += (start_addr - page_start_addr);
length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1);
for (uint32_t addr = page_start_addr;
addr < page_start_addr + length;
addr += SPI_FLASH_MMU_PAGE_SIZE) {
uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE;
if (page >= 256) {
return;
}
const void *vaddr = NULL;
if (flash_esp32_mapped_in_cache(page, &vaddr)) {
#if defined(CONFIG_SOC_ESP32)
#if CONFIG_ESP_SPIRAM
esp_spiram_writeback_cache();
#endif
esp_rom_Cache_Flush(0);
#ifdef CONFIG_SMP
esp_rom_Cache_Flush(1);
#endif
return;
#else /* CONFIG_SOC_ESP32 */
if (vaddr != NULL) {
esp_rom_Cache_Invalidate_Addr((uint32_t)vaddr,
SPI_FLASH_MMU_PAGE_SIZE);
}
#endif /* CONFIG_SOC_ESP32 */
}
}
return;
}
static int set_read_options(const struct device *dev)
{
const struct flash_esp32_dev_config *config = dev->config;
spi_dev_t *hw = config->controller;
uint32_t dummy_len = 0;
uint32_t addr_len;
uint8_t read_cmd;
bool byte_cmd = true;
uint32_t read_mode = READ_PERI_REG(PERIPHS_SPI_FLASH_CTRL);
if ((read_mode & SPI_FREAD_QIO) && (read_mode & HOST_FLASH_FASTRD)) {
spi_ll_enable_mosi(hw, 0);
spi_ll_enable_miso(hw, 1);
dummy_len = 1 + SPI1_R_QIO_DUMMY_CYCLELEN + SPI1_EXTRA_DUMMIES;
addr_len = SPI1_R_QIO_ADDR_BITSLEN + 1;
read_cmd = CMD_FASTRD_QIO;
} else if (read_mode & HOST_FLASH_FASTRD) {
spi_ll_enable_mosi(hw, 0);
spi_ll_enable_miso(hw, 1);
if (read_mode & SPI_FREAD_DIO) {
read_cmd = CMD_FASTRD_DIO;
if (SPI1_EXTRA_DUMMIES == 0) {
spi_flash_ll_set_dummy(hw, 0);
addr_len = SPI1_R_DIO_ADDR_BITSLEN + 1;
} else {
byte_cmd = false;
dummy_len = SPI1_EXTRA_DUMMIES;
addr_len = SPI1_R_DIO_ADDR_BITSLEN + 1;
}
} else {
if ((read_mode & SPI_FREAD_QUAD)) {
read_cmd = CMD_FASTRD_QUAD;
} else if ((read_mode & SPI_FREAD_DUAL)) {
read_cmd = CMD_FASTRD_DUAL;
} else {
read_cmd = CMD_FASTRD;
}
dummy_len = 1 + SPI1_R_FAST_DUMMY_CYCLELEN + SPI1_EXTRA_DUMMIES;
addr_len = SPI1_R_FAST_ADDR_BITSLEN + 1;
}
} else {
spi_ll_enable_mosi(hw, 0);
if (SPI1_EXTRA_DUMMIES == 0) {
spi_flash_ll_set_dummy(hw, 0);
} else {
dummy_len = SPI1_EXTRA_DUMMIES;
}
spi_ll_enable_miso(hw, 1);
addr_len = SPI1_R_SIO_ADDR_BITSLEN + 1;
read_cmd = CMD_READ;
}
return configure_read_mode(hw, read_cmd, addr_len, dummy_len, byte_cmd);
}
static int read_once(const struct device *dev, void *buffer, uint32_t address, uint32_t read_len)
{
const struct flash_esp32_dev_config *config = dev->config;
spi_dev_t *hw = config->controller;
int bitlen = spi_flash_ll_get_addr_bitlen(hw);
spi_flash_ll_set_usr_address(hw, address << (bitlen - 24), bitlen);
spi_flash_ll_set_miso_bitlen(hw, read_len * 8);
spi_flash_ll_user_start(hw);
int rc = flash_esp32_wait_cmd_done(hw);
if (rc != 0) {
return rc;
}
spi_flash_ll_get_buffer_data(hw, buffer, read_len);
return 0;
}
static int read_data(const struct device *dev, uint8_t *buffer, uint32_t address, uint32_t length)
{
int rc = 0;
rc = set_read_options(dev);
if (rc == -ENOTSUP) {
LOG_ERR("configure host io mode failed - unsupported");
return rc;
}
while (rc == 0 && length > 0) {
uint32_t read_len = MIN(length, SPI_FLASH_HAL_MAX_READ_BYTES);
rc = read_once(dev, buffer, address, read_len);
address += read_len;
length -= read_len;
buffer += read_len;
}
return rc;
}
static int flash_esp32_read(const struct device *dev, off_t address, void *buffer, size_t length)
{
const struct flash_esp32_dev_config *const cfg = dev->config;
const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
uint32_t chip_size = cfg->chip->chip_size;
#if defined(CONFIG_SOC_ESP32S2) || defined(CONFIG_SOC_ESP32C3)
WRITE_PERI_REG(PERIPHS_SPI_FLASH_CTRL, 0);
#endif
if (length == 0) {
return 0;
}
if (buffer == NULL || address > chip_size || address + length > chip_size) {
return -EINVAL;
}
bool direct_read = points_to_dram(buffer);
uint8_t *temp_buff = NULL;
size_t read_chunk = MIN(MAX_READ_CHUNK, length);
size_t temp_chunk = MAX_READ_CHUNK;
int rc = 0;
flash_esp32_sem_take(dev);
if (!direct_read) {
unsigned int retries = MAX_BUFF_ALLOC_RETRIES;
while (temp_buff == NULL && retries--) {
read_chunk = MIN(read_chunk, temp_chunk);
temp_chunk >>= 1;
read_chunk = (read_chunk + 3) & ~3;
temp_buff = k_malloc(read_chunk);
}
LOG_INF("allocate temp buffer: %p (%d)", temp_buff, read_chunk);
if (temp_buff == NULL) {
rc = -ENOMEM;
goto out;
}
}
uint8_t *buff = (uint8_t *)buffer;
do {
guard->start();
uint8_t *read_buff = (temp_buff) ? temp_buff : buffer;
size_t read_len = MIN(read_chunk, length);
rc = read_data(dev, read_buff, address, read_len);
if (rc) {
guard->end();
break;
}
guard->end();
if (temp_buff) {
memcpy(buffer, temp_buff, read_len);
}
address += read_len;
length -= read_len;
buff += read_len;
buffer = (void *)buff;
} while (rc == 0 && length > 0);
k_free(temp_buff);
out:
flash_esp32_sem_give(dev);
return rc;
}
static inline void set_write_options(const struct device *dev)
{
const struct flash_esp32_dev_config *config = dev->config;
spi_dev_t *hw = config->controller;
spi_flash_ll_set_dummy(hw, 0);
/* only single line flash write is currently supported */
spi_flash_ll_set_addr_bitlen(hw, (1 + ESP_ROM_SPIFLASH_W_SIO_ADDR_BITSLEN));
}
static int read_status(const struct device *dev, uint32_t *status)
{
const struct flash_esp32_dev_config *const cfg = dev->config;
uint32_t status_value = ESP_ROM_SPIFLASH_BUSY_FLAG;
if (SPI1_EXTRA_DUMMIES == 0) {
while (ESP_ROM_SPIFLASH_BUSY_FLAG ==
(status_value & ESP_ROM_SPIFLASH_BUSY_FLAG)) {
WRITE_PERI_REG(PERIPHS_SPI_FLASH_STATUS, 0);
WRITE_PERI_REG(PERIPHS_SPI_FLASH_CMD, HOST_FLASH_RDSR);
int rc = flash_esp32_wait_cmd_done(cfg->controller);
if (rc != 0) {
return rc;
}
status_value = READ_PERI_REG(PERIPHS_SPI_FLASH_STATUS);
status_value &= cfg->chip->status_mask;
}
} else {
while (ESP_ROM_SPIFLASH_BUSY_FLAG == (status_value & ESP_ROM_SPIFLASH_BUSY_FLAG)) {
esp_rom_spiflash_read_user_cmd(&status_value, CMD_RDSR);
}
}
*status = status_value;
return 0;
}
static inline bool host_idle(spi_dev_t *hw)
{
#if defined(CONFIG_SOC_ESP32)
bool idle = spi_flash_ll_host_idle(hw);
idle &= spi_flash_ll_host_idle(&HOST_FLASH_CONTROLLER);
#elif defined(CONFIG_SOC_ESP32S2) || defined(CONFIG_SOC_ESP32C3)
bool idle = spimem_flash_ll_host_idle((spi_mem_dev_t *)hw);
idle &= spimem_flash_ll_host_idle(&HOST_FLASH_CONTROLLER);
#endif
return idle;
}
static int wait_idle(const struct device *dev)
{
const struct flash_esp32_dev_config *const cfg = dev->config;
uint32_t status;
int64_t timeout = k_uptime_get() + SPI_TIMEOUT_MSEC;
/* wait for spi control ready */
while (!host_idle(cfg->controller)) {
if (k_uptime_get() > timeout) {
return -ETIMEDOUT;
}
}
/* wait for flash status ready */
if (read_status(dev, &status) != 0) {
return -EINVAL;
}
return 0;
}
static int write_protect(const struct device *dev, bool write_protect)
{
const struct flash_esp32_dev_config *const cfg = dev->config;
wait_idle(dev);
/* enable writing */
spi_flash_ll_set_write_protect(cfg->controller, write_protect);
int rc = flash_esp32_wait_cmd_done(cfg->controller);
if (rc != 0) {
return rc;
}
#if !defined(CONFIG_SOC_ESP32C3)
uint32_t flash_status = 0;
/* make sure the flash is ready for writing */
while (ESP_ROM_SPIFLASH_WRENABLE_FLAG != (flash_status & ESP_ROM_SPIFLASH_WRENABLE_FLAG)) {
read_status(dev, &flash_status);
}
#endif
return 0;
}
static int program_page(const struct device *dev, uint32_t spi_addr,
uint32_t *addr_source, int32_t byte_length)
{
const struct flash_esp32_dev_config *config = dev->config;
const uint32_t page_size = config->chip->page_size;
spi_dev_t *hw = config->controller;
/* check 4byte alignment */
if ((byte_length & 0x3) != 0) {
return -EINVAL;
}
/* check if write in one page */
if (page_size < ((spi_addr % page_size) + byte_length)) {
return -EINVAL;
}
wait_idle(dev);
uint32_t addr;
uint32_t prog_len;
while (byte_length > 0) {
if (write_protect(dev, false) != 0) {
return -EINVAL;
}
addr = spi_addr & ADDRESS_MASK_24BIT;
if (byte_length >= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM) {
addr |= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM << ESP_ROM_SPIFLASH_BYTES_LEN;
prog_len = (uint32_t)ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
spi_flash_ll_set_address(hw, addr);
spi_flash_ll_program_page(hw, addr_source, prog_len);
byte_length -= ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
spi_addr += ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM;
} else {
addr |= byte_length << ESP_ROM_SPIFLASH_BYTES_LEN;
prog_len = (uint32_t)byte_length;
spi_flash_ll_set_address(hw, addr);
spi_flash_ll_program_page(hw, addr_source, prog_len);
byte_length = 0;
}
addr_source += (ESP_ROM_SPIFLASH_BUFF_BYTE_WRITE_NUM/4);
int rc = flash_esp32_wait_cmd_done(hw);
if (rc != 0) {
return rc;
}
wait_idle(dev);
}
return 0;
}
static int flash_esp32_write_inner(const struct device *dev,
uint32_t address,
const uint32_t *buffer,
size_t length)
{
const struct flash_esp32_dev_config *config = dev->config;
const uint32_t page_size = config->chip->page_size;
const uint32_t chip_size = config->chip->chip_size;
uint32_t prog_len, prog_num;
set_write_options(dev);
/* check program size */
if ((address + length) > chip_size) {
return -EINVAL;
}
prog_len = page_size - (address % page_size);
if (length < prog_len) {
if (program_page(dev, address, (uint32_t *)buffer, length) != 0) {
return -EINVAL;
}
} else {
if (program_page(dev, address, (uint32_t *)buffer, prog_len) != 0) {
return -EINVAL;
}
/* whole page program */
prog_num = (length - prog_len) / page_size;
for (uint8_t i = 0; i < prog_num; ++i) {
if (program_page(dev, address + prog_len,
(uint32_t *)buffer + (prog_len >> 2),
page_size) != 0) {
return -EINVAL;
}
prog_len += page_size;
}
/* remain parts to program */
if (program_page(dev, address + prog_len,
(uint32_t *)buffer + (prog_len >> 2),
length - prog_len) != 0) {
return -EINVAL;
}
}
return 0;
}
static int flash_esp32_write(const struct device *dev,
off_t address,
const void *buffer,
size_t length)
{
const struct flash_esp32_dev_config *config = dev->config;
const uint32_t chip_size = config->chip->chip_size;
const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
int rc = 0;
if (address + length > chip_size) {
return -EINVAL;
}
if (length == 0) {
return 0;
}
const uint8_t *srcc = (const uint8_t *) buffer;
/*
* Large operations are split into (up to) 3 parts:
* - Left padding: 4 bytes up to the first 4-byte aligned destination offset.
* - Middle part
* - Right padding: 4 bytes from the last 4-byte aligned offset covered.
*/
size_t left_off = address & ~3U;
size_t left_size = MIN(((address + 3) & ~3U) - address, length);
size_t mid_off = left_size;
size_t mid_size = (length - left_size) & ~3U;
size_t right_off = left_size + mid_size;
size_t right_size = length - mid_size - left_size;
flash_esp32_sem_take(dev);
if (left_size > 0) {
uint32_t t = 0xffffffff;
memcpy(((uint8_t *) &t) + (address - left_off), srcc, left_size);
guard->start();
rc = flash_esp32_write_inner(dev, left_off, &t, 4);
guard->end();
if (rc != 0) {
goto out;
}
}
if (mid_size > 0) {
bool direct_write = esp_ptr_internal(srcc)
&& esp_ptr_byte_accessible(srcc)
&& ((uintptr_t) srcc + mid_off) % 4 == 0;
while (mid_size > 0 && rc == 0) {
uint32_t write_buf[8];
uint32_t write_size = MIN(mid_size, MAX_WRITE_CHUNK);
const uint8_t *write_src = srcc + mid_off;
if (!direct_write) {
write_size = MIN(write_size, sizeof(write_buf));
memcpy(write_buf, write_src, write_size);
write_src = (const uint8_t *)write_buf;
}
guard->start();
rc = flash_esp32_write_inner(dev, address + mid_off,
(const uint32_t *) write_src, write_size);
guard->end();
mid_size -= write_size;
mid_off += write_size;
}
if (rc != 0) {
goto out;
}
}
if (right_size > 0) {
uint32_t t = 0xffffffff;
memcpy(&t, srcc + right_off, right_size);
guard->start();
rc = flash_esp32_write_inner(dev, address + right_off, &t, 4);
guard->end();
}
out:
guard->start();
flash_esp32_flush_cache(address, length);
guard->end();
flash_esp32_sem_give(dev);
return rc;
}
static int erase_sector(const struct device *dev, uint32_t start_addr)
{
const struct flash_esp32_dev_config *config = dev->config;
spi_dev_t *hw = config->controller;
int rc = write_protect(dev, false);
if (rc == 0) {
rc = wait_idle(dev);
}
if (rc == 0) {
spi_flash_ll_set_addr_bitlen(hw, 24);
spi_flash_ll_set_address(hw, start_addr & ADDRESS_MASK_24BIT);
spi_flash_ll_erase_sector(hw);
rc = flash_esp32_wait_cmd_done(hw);
if (rc) {
return rc;
}
rc = wait_idle(dev);
if (rc) {
LOG_ERR("waiting for host device idle state has failed");
}
}
return rc;
}
static int flash_esp32_erase(const struct device *dev, off_t start, size_t len)
{
const struct flash_esp32_dev_config *config = dev->config;
uint32_t sector_size = config->chip->sector_size;
uint32_t chip_size = config->chip->chip_size;
const spi_flash_guard_funcs_t *guard = spi_flash_guard_get();
int rc = 0;
if (start % sector_size != 0) {
return -EINVAL;
}
if (len % sector_size != 0) {
return -EINVAL;
}
if (len + start > chip_size) {
return -EINVAL;
}
flash_esp32_sem_take(dev);
set_write_options(dev);
while (len >= sector_size) {
guard->start();
rc = erase_sector(dev, start);
if (rc) {
guard->end();
goto out;
}
start += sector_size;
len -= sector_size;
guard->end();
}
out:
guard->start();
flash_esp32_flush_cache(start, len);
guard->end();
flash_esp32_sem_give(dev);
return rc;
}
#if CONFIG_FLASH_PAGE_LAYOUT
static const struct flash_pages_layout flash_esp32_pages_layout = {
.pages_count = DT_REG_SIZE(SOC_NV_FLASH_NODE) / FLASH_ERASE_BLK_SZ,
.pages_size = DT_PROP(SOC_NV_FLASH_NODE, erase_block_size),
};
void flash_esp32_page_layout(const struct device *dev,
const struct flash_pages_layout **layout,
size_t *layout_size)
{
*layout = &flash_esp32_pages_layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static const struct flash_parameters *
flash_esp32_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
return &flash_esp32_parameters;
}
static int flash_esp32_init(const struct device *dev)
{
struct flash_esp32_dev_data *const dev_data = dev->data;
#if defined(CONFIG_SOC_ESP32C3)
spiflash_legacy_data_t *legacy_data = rom_spiflash_legacy_data;
esp_flashchip_info.chip_size = legacy_data->chip.chip_size;
esp_flashchip_info.sector_size = legacy_data->chip.sector_size;
esp_flashchip_info.page_size = legacy_data->chip.page_size;
#endif
k_sem_init(&dev_data->sem, 1, 1);
return 0;
}
static const struct flash_driver_api flash_esp32_driver_api = {
.read = flash_esp32_read,
.write = flash_esp32_write,
.erase = flash_esp32_erase,
.get_parameters = flash_esp32_get_parameters,
#ifdef CONFIG_FLASH_PAGE_LAYOUT
.page_layout = flash_esp32_page_layout,
#endif
};
static struct flash_esp32_dev_data flash_esp32_data;
static const struct flash_esp32_dev_config flash_esp32_config = {
.controller = (spi_dev_t *) DT_INST_REG_ADDR(0),
.chip = &esp_flashchip_info
};
DEVICE_DT_INST_DEFINE(0, flash_esp32_init,
NULL,
&flash_esp32_data, &flash_esp32_config,
POST_KERNEL, CONFIG_FLASH_INIT_PRIORITY,
&flash_esp32_driver_api);