zephyr/soc/openisa/rv32m1/soc.c

243 lines
5.7 KiB
C

/*
* Copyright (c) 2018 Foundries.io
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <fsl_clock.h>
#include <zephyr/sys/util.h>
#if defined(CONFIG_MULTI_LEVEL_INTERRUPTS)
#include <errno.h>
#include <zephyr/irq_nextlevel.h>
#endif
#include <soc.h>
#define LOG_LEVEL CONFIG_SOC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(soc);
#define SCG_LPFLL_DISABLE 0U
static const struct device *dev_intmux;
/*
* Run-mode configuration for the fast internal reference clock (FIRC).
*/
static const scg_firc_config_t rv32m1_firc_config = {
.enableMode = kSCG_FircEnable,
.div1 = kSCG_AsyncClkDivBy1,
.div2 = kSCG_AsyncClkDivBy1,
.div3 = kSCG_AsyncClkDivBy1,
.range = kSCG_FircRange48M,
.trimConfig = NULL,
};
/*
* FIRC-based system clock configuration.
*/
static const scg_sys_clk_config_t rv32m1_sys_clk_config_firc = {
.divSlow = kSCG_SysClkDivBy2,
.divBus = kSCG_SysClkDivBy1,
.divExt = kSCG_SysClkDivBy1,
.divCore = kSCG_SysClkDivBy1,
.src = kSCG_SysClkSrcFirc,
};
/*
* LPFLL configuration.
*/
static const scg_lpfll_config_t rv32m1_lpfll_cfg = {
.enableMode = SCG_LPFLL_DISABLE,
.div1 = kSCG_AsyncClkDivBy1,
.div2 = kSCG_AsyncClkDisable,
.div3 = kSCG_AsyncClkDisable,
.range = kSCG_LpFllRange48M,
.trimConfig = NULL,
};
void sys_arch_reboot(int type)
{
ARG_UNUSED(type);
EVENT_UNIT->SLPCTRL |= EVENT_SLPCTRL_SYSRSTREQST_MASK;
}
void arch_irq_enable(unsigned int irq)
{
if (IS_ENABLED(CONFIG_MULTI_LEVEL_INTERRUPTS)) {
unsigned int level = rv32m1_irq_level(irq);
if (level == 1U) {
EVENT_UNIT->INTPTEN |= BIT(rv32m1_level1_irq(irq));
/* Ensures write has finished: */
(void)(EVENT_UNIT->INTPTEN);
} else {
irq_enable_next_level(dev_intmux, irq);
}
} else {
EVENT_UNIT->INTPTEN |= BIT(rv32m1_level1_irq(irq));
(void)(EVENT_UNIT->INTPTEN);
}
}
void arch_irq_disable(unsigned int irq)
{
if (IS_ENABLED(CONFIG_MULTI_LEVEL_INTERRUPTS)) {
unsigned int level = rv32m1_irq_level(irq);
if (level == 1U) {
EVENT_UNIT->INTPTEN &= ~BIT(rv32m1_level1_irq(irq));
/* Ensures write has finished: */
(void)(EVENT_UNIT->INTPTEN);
} else {
irq_disable_next_level(dev_intmux, irq);
}
} else {
EVENT_UNIT->INTPTEN &= ~BIT(rv32m1_level1_irq(irq));
(void)(EVENT_UNIT->INTPTEN);
}
}
int arch_irq_is_enabled(unsigned int irq)
{
if (IS_ENABLED(CONFIG_MULTI_LEVEL_INTERRUPTS)) {
unsigned int level = rv32m1_irq_level(irq);
if (level == 1U) {
return (EVENT_UNIT->INTPTEN &
BIT(rv32m1_level1_irq(irq))) != 0;
} else {
uint32_t channel, line, ier;
/*
* Here we break the abstraction and look
* directly at the INTMUX registers. We can't
* use the irq_nextlevel.h API, as that only
* tells us whether some IRQ at the next level
* is enabled or not.
*/
channel = rv32m1_intmux_channel(irq);
line = rv32m1_intmux_line(irq);
ier = INTMUX->CHANNEL[channel].CHn_IER_31_0 & BIT(line);
return ier != 0U;
}
} else {
return (EVENT_UNIT->INTPTEN & BIT(rv32m1_level1_irq(irq))) != 0;
}
}
/*
* SoC-level interrupt initialization. Clear any pending interrupts or
* events, and find the INTMUX device if necessary.
*
* This gets called as almost the first thing z_cstart() does, so it
* will happen before any calls to the _arch_irq_xxx() routines above.
*/
void soc_interrupt_init(void)
{
EVENT_UNIT->INTPTPENDCLEAR = 0xFFFFFFFF;
(void)(EVENT_UNIT->INTPTPENDCLEAR); /* Ensures write has finished. */
EVENT_UNIT->EVTPENDCLEAR = 0xFFFFFFFF;
(void)(EVENT_UNIT->EVTPENDCLEAR); /* Ensures write has finished. */
if (IS_ENABLED(CONFIG_MULTI_LEVEL_INTERRUPTS)) {
dev_intmux = DEVICE_DT_GET(DT_INST(0, openisa_rv32m1_intmux));
}
}
/**
* @brief Switch system clock configuration in run mode.
*
* Blocks until the updated configuration takes effect.
*
* @param cfg New system clock configuration
*/
static void rv32m1_switch_sys_clk(const scg_sys_clk_config_t *cfg)
{
scg_sys_clk_config_t cur_cfg;
CLOCK_SetRunModeSysClkConfig(cfg);
do {
CLOCK_GetCurSysClkConfig(&cur_cfg);
} while (cur_cfg.src != cfg->src);
}
/**
* @brief Initializes SIRC and switches system clock source to SIRC.
*/
static void rv32m1_switch_to_sirc(void)
{
const scg_sirc_config_t sirc_config = {
.enableMode = kSCG_SircEnable,
.div1 = kSCG_AsyncClkDisable,
.div2 = kSCG_AsyncClkDivBy2,
.range = kSCG_SircRangeHigh,
};
const scg_sys_clk_config_t sys_clk_config_sirc = {
.divSlow = kSCG_SysClkDivBy4,
.divCore = kSCG_SysClkDivBy1,
.src = kSCG_SysClkSrcSirc,
};
CLOCK_InitSirc(&sirc_config);
rv32m1_switch_sys_clk(&sys_clk_config_sirc);
}
/**
* @brief Setup peripheral clocks
*
* Setup the peripheral clock sources.
*/
static void rv32m1_setup_peripheral_clocks(void)
{
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(tpm0))
CLOCK_SetIpSrc(kCLOCK_Tpm0, kCLOCK_IpSrcFircAsync);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(tpm1))
CLOCK_SetIpSrc(kCLOCK_Tpm1, kCLOCK_IpSrcFircAsync);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(tpm2))
CLOCK_SetIpSrc(kCLOCK_Tpm2, kCLOCK_IpSrcFircAsync);
#endif
#if DT_NODE_HAS_STATUS_OKAY(DT_NODELABEL(tpm3))
CLOCK_SetIpSrc(kCLOCK_Tpm3, kCLOCK_IpSrcFircAsync);
#endif
}
/**
* @brief Perform basic hardware initialization
*
* Initializes the base clocks and LPFLL using helpers provided by the HAL.
*
* @return 0
*/
void soc_early_init_hook(void)
{
unsigned int key;
key = irq_lock();
/* Switch to SIRC so we can initialize the FIRC. */
rv32m1_switch_to_sirc();
/* Now that we're running off of SIRC, set up and switch to FIRC. */
CLOCK_InitFirc(&rv32m1_firc_config);
rv32m1_switch_sys_clk(&rv32m1_sys_clk_config_firc);
/* Initialize LPFLL */
CLOCK_InitLpFll(&rv32m1_lpfll_cfg);
/* Initialize peripheral clocks */
rv32m1_setup_peripheral_clocks();
irq_unlock(key);
}