zephyr/kernel/unified/thread.c

460 lines
9.9 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @file
* @brief Nanokernel thread support
*
* This module provides general purpose thread support, with applies to both
* tasks or fibers.
*/
#include <kernel.h>
#include <toolchain.h>
#include <sections.h>
#include <nano_private.h>
#include <misc/printk.h>
#include <sys_clock.h>
#include <drivers/system_timer.h>
#include <sched.h>
#include <wait_q.h>
/* Legacy API */
int sys_execution_context_type_get(void)
{
if (k_am_in_isr())
return NANO_CTX_ISR;
if (_current->prio < 0)
return NANO_CTX_FIBER;
return NANO_CTX_TASK;
}
/**
*
* @brief Determine if code is running at interrupt level
*
* @return 0 if invoked by a thread, or non-zero if invoked by an ISR
*/
int k_am_in_isr(void)
{
return _IS_IN_ISR();
}
/**
*
* @brief Mark thread as essential to system
*
* This function tags the running fiber or task as essential to system
* operation; exceptions raised by this thread will be treated as a fatal
* system error.
*
* @return N/A
*/
void _thread_essential_set(void)
{
_current->flags |= ESSENTIAL;
}
/**
*
* @brief Mark thread as not essential to system
*
* This function tags the running fiber or task as not essential to system
* operation; exceptions raised by this thread may be recoverable.
* (This is the default tag for a thread.)
*
* @return N/A
*/
void _thread_essential_clear(void)
{
_current->flags &= ~ESSENTIAL;
}
/**
*
* @brief Is the specified thread essential?
*
* This routine indicates if the running fiber or task is an essential system
* thread.
*
* @return Non-zero if current thread is essential, zero if it is not
*/
int _is_thread_essential(void)
{
return _current->flags & ESSENTIAL;
}
void k_busy_wait(uint32_t usec_to_wait)
{
/* use 64-bit math to prevent overflow when multiplying */
uint32_t cycles_to_wait = (uint32_t)(
(uint64_t)usec_to_wait *
(uint64_t)sys_clock_hw_cycles_per_sec /
(uint64_t)USEC_PER_SEC
);
uint32_t start_cycles = k_cycle_get_32();
for (;;) {
uint32_t current_cycles = k_cycle_get_32();
/* this handles the rollover on an unsigned 32-bit value */
if ((current_cycles - start_cycles) >= cycles_to_wait) {
break;
}
}
}
#ifdef CONFIG_THREAD_CUSTOM_DATA
/**
*
* @brief Set thread's custom data
*
* This routine sets the custom data value for the current task or fiber.
* Custom data is not used by the kernel itself, and is freely available
* for the thread to use as it sees fit.
*
* @param value New to set the thread's custom data to.
*
* @return N/A
*/
void k_thread_custom_data_set(void *value)
{
_current->custom_data = value;
}
/**
*
* @brief Get thread's custom data
*
* This function returns the custom data value for the current task or fiber.
*
* @return current handle value
*/
void *k_thread_custom_data_get(void)
{
return _current->custom_data;
}
#endif /* CONFIG_THREAD_CUSTOM_DATA */
#if defined(CONFIG_THREAD_MONITOR)
/**
*
* @brief Thread exit routine
*
* This function is invoked when the specified thread is aborted, either
* normally or abnormally. It is called for the termination of any thread,
* (fibers and tasks).
*
* This routine must be invoked either from a fiber or from a task with
* interrupts locked to guarantee that the list of threads does not change in
* mid-operation. It cannot be called from ISR context.
*
* @return N/A
*/
void _thread_exit(struct tcs *thread)
{
/*
* Remove thread from the list of threads. This singly linked list of
* threads maintains ALL the threads in the system: both tasks and
* fibers regardless of whether they are runnable.
*/
if (thread == _nanokernel.threads) {
_nanokernel.threads = _nanokernel.threads->next_thread;
} else {
struct tcs *prev_thread;
prev_thread = _nanokernel.threads;
while (thread != prev_thread->next_thread) {
prev_thread = prev_thread->next_thread;
}
prev_thread->next_thread = thread->next_thread;
}
}
#endif /* CONFIG_THREAD_MONITOR */
/**
*
* @brief Common thread entry point function
*
* This function serves as the entry point for _all_ threads, i.e. both
* task and fibers are instantiated such that initial execution starts
* here.
*
* This routine invokes the actual task or fiber entry point function and
* passes it three arguments. It also handles graceful termination of the
* task or fiber if the entry point function ever returns.
*
* @param pEntry address of the app entry point function
* @param parameter1 1st arg to the app entry point function
* @param parameter2 2nd arg to the app entry point function
* @param parameter3 3rd arg to the app entry point function
*
* @internal
* The 'noreturn' attribute is applied to this function so that the compiler
* can dispense with generating the usual preamble that is only required for
* functions that actually return.
*
* @return Does not return
*
*/
FUNC_NORETURN void _thread_entry(void (*entry)(void *, void *, void *),
void *p1, void *p2, void *p3)
{
entry(p1, p2, p3);
if (_is_thread_essential()) {
_NanoFatalErrorHandler(_NANO_ERR_INVALID_TASK_EXIT,
&_default_esf);
}
k_thread_abort(_current);
/*
* Compiler can't tell that fiber_abort() won't return and issues a
* warning unless we explicitly tell it that control never gets this
* far.
*/
CODE_UNREACHABLE;
}
static void start_thread(struct tcs *thread)
{
int key = irq_lock(); /* protect kernel queues */
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
if (_must_switch_threads()) {
_Swap(key);
return;
}
}
irq_unlock(key);
}
static void schedule_new_thread(struct k_thread *thread, int32_t delay)
{
#ifdef CONFIG_NANO_TIMEOUTS
if (delay == 0) {
start_thread(thread);
} else {
_mark_thread_as_timing(thread);
_timeout_add(thread, NULL, _ms_to_ticks(delay));
}
#else
ARG_UNUSED(delay);
start_thread(thread);
#endif
}
k_tid_t k_thread_spawn(char *stack, unsigned stack_size,
void (*entry)(void *, void *, void*),
void *p1, void *p2, void *p3,
int32_t prio, uint32_t options, int32_t delay)
{
__ASSERT(!_is_in_isr(), "");
struct tcs *new_thread = (struct tcs *)stack;
_new_thread(stack, stack_size, NULL, entry, p1, p2, p3, prio, options);
schedule_new_thread(new_thread, delay);
return new_thread;
}
int k_thread_cancel(k_tid_t tid)
{
struct tcs *thread = tid;
int key = irq_lock();
if (_has_thread_started(thread) || !_is_thread_timing(thread)) {
irq_unlock(key);
return -EINVAL;
}
_timeout_abort(thread);
_thread_exit(thread);
irq_unlock(key);
return 0;
}
void _k_thread_group_op(uint32_t groups, void (*func)(struct tcs *))
{
unsigned int key;
__ASSERT(!_is_in_isr(), "");
k_sched_lock();
/* Invoke func() on each static thread in the specified group set. */
_FOREACH_STATIC_THREAD(thread_init) {
if (is_in_any_group(thread_init, groups)) {
key = irq_lock();
func(thread_init->thread);
irq_unlock(key);
}
}
/*
* If the current thread is still in a ready state, then let the
* "unlock scheduler" code determine if any rescheduling is needed.
*/
if (_is_thread_ready(_current)) {
k_sched_unlock();
return;
}
/* The current thread is no longer in a ready state--reschedule. */
key = irq_lock();
_sched_unlock_no_reschedule();
_Swap(key);
}
void _k_thread_single_start(struct tcs *thread)
{
_mark_thread_as_started(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void _k_thread_single_suspend(struct tcs *thread)
{
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
}
_mark_thread_as_suspended(thread);
}
void k_thread_suspend(struct tcs *thread)
{
unsigned int key = irq_lock();
_k_thread_single_suspend(thread);
if (thread == _current) {
_Swap(key);
} else {
irq_unlock(key);
}
}
void _k_thread_single_resume(struct tcs *thread)
{
_mark_thread_as_not_suspended(thread);
if (_is_thread_ready(thread)) {
_add_thread_to_ready_q(thread);
}
}
void k_thread_resume(struct tcs *thread)
{
unsigned int key = irq_lock();
_k_thread_single_resume(thread);
_reschedule_threads(key);
}
void _k_thread_single_abort(struct tcs *thread)
{
if (thread->fn_abort != NULL) {
thread->fn_abort();
}
if (_is_thread_ready(thread)) {
_remove_thread_from_ready_q(thread);
} else {
if (_is_thread_pending(thread)) {
_unpend_thread(thread);
}
if (_is_thread_timing(thread)) {
_timeout_abort(thread);
_mark_thread_as_not_timing(thread);
}
}
_mark_thread_as_dead(thread);
}
void _init_static_threads(void)
{
_FOREACH_STATIC_THREAD(thread_init) {
_new_thread(
thread_init->init_stack,
thread_init->init_stack_size,
NULL,
thread_init->init_entry,
thread_init->init_p1,
thread_init->init_p2,
thread_init->init_p3,
thread_init->init_prio,
0);
thread_init->thread->init_data = thread_init;
}
_k_thread_group_op(K_THREAD_GROUP_EXE, _k_thread_single_start);
}
uint32_t _k_thread_group_mask_get(struct tcs *thread)
{
struct k_thread_static_init *thread_init = thread->init_data;
return thread_init->init_groups;
}
void _k_thread_group_join(uint32_t groups, struct tcs *thread)
{
struct k_thread_static_init *thread_init = thread->init_data;
thread_init->init_groups |= groups;
}
void _k_thread_group_leave(uint32_t groups, struct tcs *thread)
{
struct k_thread_static_init *thread_init = thread->init_data;
thread_init->init_groups &= groups;
}
/* legacy API */
void task_start(ktask_t task)
{
int key = irq_lock();
_k_thread_single_start(task);
_reschedule_threads(key);
}