zephyr/drivers/adc/adc_qmsi.c

284 lines
6.4 KiB
C

/* adc_qmsi.c - QMSI ADC driver */
/*
* Copyright (c) 2016 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <init.h>
#include <nanokernel.h>
#include <string.h>
#include <stdlib.h>
#include <board.h>
#include <adc.h>
#include <arch/cpu.h>
#include <atomic.h>
#include "qm_adc.h"
#include "qm_scss.h"
enum {
ADC_STATE_IDLE,
ADC_STATE_BUSY,
ADC_STATE_ERROR
};
struct adc_info {
atomic_t state;
device_sync_call_t sync;
struct nano_sem sem;
};
static struct adc_info *adc_context;
static void adc_config_irq(void);
static void complete_callback(void)
{
if (adc_context) {
device_sync_call_complete(&adc_context->sync);
}
}
static void error_callback(void)
{
if (adc_context) {
adc_context->state = ADC_STATE_ERROR;
device_sync_call_complete(&adc_context->sync);
}
}
static void adc_lock(struct adc_info *data)
{
nano_sem_take(&data->sem, TICKS_UNLIMITED);
data->state = ADC_STATE_BUSY;
}
static void adc_unlock(struct adc_info *data)
{
nano_sem_give(&data->sem);
data->state = ADC_STATE_IDLE;
}
#if (CONFIG_ADC_QMSI_CALIBRATION)
static void adc_qmsi_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_CAL);
qm_adc_calibrate(QM_ADC_0);
adc_unlock(info);
}
#else
static void adc_qmsi_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_NO_CAL);
adc_unlock(info);
}
#endif /* CONFIG_ADC_QMSI_CALIBRATION */
static void adc_qmsi_disable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
/* Go to deep sleep */
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_DEEP_PWR_DOWN);
adc_unlock(info);
}
#if (CONFIG_ADC_QMSI_POLL)
static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = DEV_OK;
qm_adc_xfer_t xfer;
qm_adc_config_t cfg;
struct adc_info *info = dev->driver_data;
if (qm_adc_get_config(QM_ADC_0, &cfg) != QM_RC_OK) {
return DEV_INVALID_OP;
}
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table */
xfer.ch_len = 1;
xfer.samples = (uint32_t *)seq_tbl->entries[i].buffer;
/* buffer length (bytes) the number of samples, the QMSI Driver does
* not allow more than QM_ADC_FIFO_LEN samples at the time in polling
* mode, if that happens, the qm_adc_convert api will return with an
* error
*/
xfer.samples_len = (seq_tbl->entries[i].buffer_length);
xfer.complete_callback = NULL;
xfer.error_callback = NULL;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_adc_set_config(QM_ADC_0, &cfg) != QM_RC_OK) {
ret = DEV_INVALID_CONF;
adc_unlock(info);
break;
}
/* Run the conversion, here the function will poll for the samples
* The function will constantly read the status register to check if
* the number of samples required has been captured
*/
if (qm_adc_convert(QM_ADC_0, &xfer) != QM_RC_OK) {
ret = DEV_FAIL;
adc_unlock(info);
break;
}
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#else
static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = DEV_OK;
qm_adc_xfer_t xfer;
qm_adc_config_t cfg;
struct adc_info *info = dev->driver_data;
if (qm_adc_get_config(QM_ADC_0, &cfg) != QM_RC_OK) {
return DEV_INVALID_OP;
}
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table */
xfer.ch_len = 1;
xfer.samples = (uint32_t *)seq_tbl->entries[i].buffer;
xfer.samples_len = (seq_tbl->entries[i].buffer_length) >> 2;
xfer.complete_callback = complete_callback;
xfer.error_callback = error_callback;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_adc_set_config(QM_ADC_0, &cfg) != QM_RC_OK) {
ret = DEV_INVALID_CONF;
adc_unlock(info);
break;
}
/* ADC info used by the callbacks */
adc_context = info;
/* This is the interrupt driven API, will generate and interrupt and
* call the complete_callback function once the samples have been
* obtained
*/
if (qm_adc_irq_convert(QM_ADC_0, &xfer) != QM_RC_OK) {
adc_context = NULL;
ret = DEV_FAIL;
adc_unlock(info);
break;
}
/* Wait for the interrupt to finish */
device_sync_call_wait(&info->sync);
if (info->state == ADC_STATE_ERROR) {
ret = DEV_FAIL;
adc_unlock(info);
break;
}
adc_context = NULL;
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#endif /* CONFIG_ADC_QMSI_POLL */
void adc_qmsi_isr(void *arg)
{
qm_adc_0_isr();
}
static struct adc_driver_api api_funcs = {
.enable = adc_qmsi_enable,
.disable = adc_qmsi_disable,
.read = adc_qmsi_read,
};
int adc_qmsi_init(struct device *dev)
{
qm_adc_config_t cfg;
struct adc_info *info = dev->driver_data;
dev->driver_api = &api_funcs;
/* Enable the ADC and set the clock divisor */
clk_periph_enable(CLK_PERIPH_CLK | CLK_PERIPH_ADC |
CLK_PERIPH_ADC_REGISTER);
/* ADC clock divider*/
clk_adc_set_div(CONFIG_ADC_QMSI_CLOCK_RATIO);
/* Set up config */
/* Clock cycles between the start of each sample */
cfg.window = CONFIG_ADC_QMSI_SERIAL_DELAY;
cfg.resolution = CONFIG_ADC_QMSI_SAMPLE_WIDTH;
qm_adc_set_config(QM_ADC_0, &cfg);
device_sync_call_init(&info->sync);
nano_sem_init(&info->sem);
nano_sem_give(&info->sem);
info->state = ADC_STATE_IDLE;
adc_config_irq();
return DEV_OK;
}
struct adc_info adc_info_dev;
DEVICE_INIT(adc_qmsi, CONFIG_ADC_QMSI_NAME, &adc_qmsi_init,
&adc_info_dev, NULL,
SECONDARY, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
static void adc_config_irq(void)
{
IRQ_CONNECT(CONFIG_ADC_IRQ, CONFIG_ADC_PRI, qm_adc_0_isr,
NULL, (IOAPIC_LEVEL | IOAPIC_HIGH));
irq_enable(CONFIG_ADC_IRQ);
QM_SCSS_INT->int_adc_calib_mask &= ~BIT(0);
}