zephyr/drivers/adc/adc_lmp90xxx.c

1173 lines
29 KiB
C

/*
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief ADC driver for the LMP90xxx AFE.
*/
#include <drivers/adc.h>
#include <drivers/adc/lmp90xxx.h>
#include <drivers/gpio.h>
#include <drivers/spi.h>
#include <kernel.h>
#include <sys/byteorder.h>
#include <sys/crc.h>
#include <zephyr.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(adc_lmp90xxx);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
/* LMP90xxx register addresses */
#define LMP90XXX_REG_RESETCN 0x00U
#define LMP90XXX_REG_SPI_HANDSHAKECN 0x01U
#define LMP90XXX_REG_SPI_RESET 0x02U
#define LMP90XXX_REG_SPI_STREAMCN 0x03U
#define LMP90XXX_REG_PWRCN 0x08U
#define LMP90XXX_REG_DATA_ONLY_1 0x09U
#define LMP90XXX_REG_DATA_ONLY_2 0x0AU
#define LMP90XXX_REG_ADC_RESTART 0x0BU
#define LMP90XXX_REG_GPIO_DIRCN 0x0EU
#define LMP90XXX_REG_GPIO_DAT 0x0FU
#define LMP90XXX_REG_BGCALCN 0x10U
#define LMP90XXX_REG_SPI_DRDYBCN 0x11U
#define LMP90XXX_REG_ADC_AUXCN 0x12U
#define LMP90XXX_REG_SPI_CRC_CN 0x13U
#define LMP90XXX_REG_SENDIAG_THLDH 0x14U
#define LMP90XXX_REG_SENDIAG_THLDL 0x15U
#define LMP90XXX_REG_SCALCN 0x17U
#define LMP90XXX_REG_ADC_DONE 0x18U
#define LMP90XXX_REG_SENDIAG_FLAGS 0x19U
#define LMP90XXX_REG_ADC_DOUT 0x1AU
#define LMP90XXX_REG_SPI_CRC_DAT 0x1DU
#define LMP90XXX_REG_CH_STS 0x1EU
#define LMP90XXX_REG_CH_SCAN 0x1FU
/* LMP90xxx channel input and configuration registers */
#define LMP90XXX_REG_CH_INPUTCN(ch) (0x20U + (2 * ch))
#define LMP90XXX_REG_CH_CONFIG(ch) (0x21U + (2 * ch))
/* LMP90xxx upper (URA) and lower (LRA) register addresses */
#define LMP90XXX_URA(addr) ((addr >> 4U) & GENMASK(2, 0))
#define LMP90XXX_LRA(addr) (addr & GENMASK(3, 0))
/* LMP90xxx instruction byte 1 (INST1) */
#define LMP90XXX_INST1_WAB 0x10U
#define LMP90XXX_INST1_RA 0x90U
/* LMP90xxx instruction byte 2 (INST2) */
#define LMP90XXX_INST2_WB 0U
#define LMP90XXX_INST2_R BIT(7)
#define LMP90XXX_INST2_SZ_1 (0x0U << 5)
#define LMP90XXX_INST2_SZ_2 (0x1U << 5)
#define LMP90XXX_INST2_SZ_3 (0x2U << 5)
#define LMP90XXX_INST2_SZ_STREAM (0x3U << 5)
/* LMP90xxx register values/commands */
#define LMP90XXX_REG_AND_CNV_RST 0xC3U
#define LMP90XXX_SDO_DRDYB_DRIVER(x) ((x & BIT_MASK(3)) << 1)
#define LMP90XXX_PWRCN(x) (x & BIT_MASK(2))
#define LMP90XXX_RTD_CUR_SEL(x) (x & BIT_MASK(4))
#define LMP90XXX_SPI_DRDYB_D6(x) ((x & BIT(0)) << 7)
#define LMP90XXX_EN_CRC(x) ((x & BIT(0)) << 4)
#define LMP90XXX_DRDYB_AFT_CRC(x) ((x & BIT(0)) << 2)
#define LMP90XXX_CH_SCAN_SEL(x) ((x & BIT_MASK(2)) << 6)
#define LMP90XXX_LAST_CH(x) ((x & BIT_MASK(3)) << 3)
#define LMP90XXX_FIRST_CH(x) (x & BIT_MASK(3))
#define LMP90XXX_BURNOUT_EN(x) ((x & BIT(0)) << 7)
#define LMP90XXX_VREF_SEL(x) ((x & BIT(0)) << 6)
#define LMP90XXX_VINP(x) ((x & BIT_MASK(3)) << 3)
#define LMP90XXX_VINN(x) (x & BIT_MASK(3))
#define LMP90XXX_BGCALN(x) (x & BIT_MASK(3))
#define LMP90XXX_ODR_SEL(x) ((x & BIT_MASK(3)) << 4)
#define LMP90XXX_GAIN_SEL(x) ((x & BIT_MASK(3)) << 1)
#define LMP90XXX_BUF_EN(x) (x & BIT(0))
#define LMP90XXX_GPIO_DAT_MASK BIT_MASK(LMP90XXX_GPIO_MAX)
/* Invalid (never used) Upper Register Address */
#define LMP90XXX_INVALID_URA UINT8_MAX
/* Maximum number of ADC channels */
#define LMP90XXX_MAX_CHANNELS 7
/* Maximum number of ADC inputs */
#define LMP90XXX_MAX_INPUTS 8
/* Default Output Data Rate (ODR) is 214.65 SPS */
#define LMP90XXX_DEFAULT_ODR 7
/* Macro for checking if Data Ready Bar IRQ is in use */
#define LMP90XXX_HAS_DRDYB(config) (config->drdyb_dev_name != NULL)
struct lmp90xxx_config {
const char *spi_dev_name;
const char *spi_cs_dev_name;
uint8_t spi_cs_pin;
struct spi_config spi_cfg;
const char *drdyb_dev_name;
gpio_pin_t drdyb_pin;
gpio_dt_flags_t drdyb_flags;
uint8_t rtd_current;
uint8_t resolution;
uint8_t channels;
};
struct lmp90xxx_data {
struct adc_context ctx;
struct device *spi_dev;
struct spi_cs_control spi_cs;
struct gpio_callback drdyb_cb;
struct k_mutex ura_lock;
uint8_t ura;
int32_t *buffer;
int32_t *repeat_buffer;
uint32_t channels;
bool calibrate;
uint8_t channel_odr[LMP90XXX_MAX_CHANNELS];
#ifdef CONFIG_ADC_LMP90XXX_GPIO
struct k_mutex gpio_lock;
uint8_t gpio_dircn;
uint8_t gpio_dat;
#endif /* CONFIG_ADC_LMP90XXX_GPIO */
struct k_thread thread;
struct k_sem acq_sem;
struct k_sem drdyb_sem;
K_THREAD_STACK_MEMBER(stack,
CONFIG_ADC_LMP90XXX_ACQUISITION_THREAD_STACK_SIZE);
};
/*
* Approximated LMP90xxx acquisition times in milliseconds. These are
* used for the initial delay when polling for data ready.
*/
static const int32_t lmp90xxx_odr_delay_tbl[8] = {
596, /* 13.42/8 = 1.6775 SPS */
298, /* 13.42/4 = 3.355 SPS */
149, /* 13.42/2 = 6.71 SPS */
75, /* 13.42 SPS */
37, /* 214.65/8 = 26.83125 SPS */
19, /* 214.65/4 = 53.6625 SPS */
9, /* 214.65/2 = 107.325 SPS */
5, /* 214.65 SPS (default) */
};
static inline uint8_t lmp90xxx_inst2_sz(size_t len)
{
if (len == 1) {
return LMP90XXX_INST2_SZ_1;
} else if (len == 2) {
return LMP90XXX_INST2_SZ_2;
} else if (len == 3) {
return LMP90XXX_INST2_SZ_3;
} else {
return LMP90XXX_INST2_SZ_STREAM;
}
}
static int lmp90xxx_read_reg(struct device *dev, uint8_t addr, uint8_t *dptr,
size_t len)
{
const struct lmp90xxx_config *config = dev->config_info;
struct lmp90xxx_data *data = dev->driver_data;
uint8_t ura = LMP90XXX_URA(addr);
uint8_t inst1_uab[2] = { LMP90XXX_INST1_WAB, ura };
uint8_t inst2 = LMP90XXX_INST2_R | LMP90XXX_LRA(addr);
struct spi_buf tx_buf[2];
struct spi_buf rx_buf[2];
struct spi_buf_set tx;
struct spi_buf_set rx;
int dummy = 0;
int i = 0;
int err;
if (len == 0) {
LOG_ERR("attempt to read 0 bytes from register 0x%02x", addr);
return -EINVAL;
}
if (k_is_in_isr()) {
/* Prevent SPI transactions from an ISR */
return -EWOULDBLOCK;
}
k_mutex_lock(&data->ura_lock, K_FOREVER);
if (ura != data->ura) {
/* Instruction Byte 1 + Upper Address Byte */
tx_buf[i].buf = inst1_uab;
tx_buf[i].len = sizeof(inst1_uab);
dummy += sizeof(inst1_uab);
i++;
}
/* Instruction Byte 2 */
inst2 |= lmp90xxx_inst2_sz(len);
tx_buf[i].buf = &inst2;
tx_buf[i].len = sizeof(inst2);
dummy += sizeof(inst2);
i++;
/* Dummy RX Bytes */
rx_buf[0].buf = NULL;
rx_buf[0].len = dummy;
/* Data Byte(s) */
rx_buf[1].buf = dptr;
rx_buf[1].len = len;
tx.buffers = tx_buf;
tx.count = i;
rx.buffers = rx_buf;
rx.count = 2;
err = spi_transceive(data->spi_dev, &config->spi_cfg, &tx, &rx);
if (!err) {
data->ura = ura;
} else {
/* Force INST1 + UAB on next access */
data->ura = LMP90XXX_INVALID_URA;
}
k_mutex_unlock(&data->ura_lock);
return err;
}
static int lmp90xxx_read_reg8(struct device *dev, uint8_t addr, uint8_t *val)
{
return lmp90xxx_read_reg(dev, addr, val, sizeof(val));
}
static int lmp90xxx_write_reg(struct device *dev, uint8_t addr, uint8_t *dptr,
size_t len)
{
const struct lmp90xxx_config *config = dev->config_info;
struct lmp90xxx_data *data = dev->driver_data;
uint8_t ura = LMP90XXX_URA(addr);
uint8_t inst1_uab[2] = { LMP90XXX_INST1_WAB, ura };
uint8_t inst2 = LMP90XXX_INST2_WB | LMP90XXX_LRA(addr);
struct spi_buf tx_buf[3];
struct spi_buf_set tx;
int i = 0;
int err;
if (len == 0) {
LOG_ERR("attempt write 0 bytes to register 0x%02x", addr);
return -EINVAL;
}
if (k_is_in_isr()) {
/* Prevent SPI transactions from an ISR */
return -EWOULDBLOCK;
}
k_mutex_lock(&data->ura_lock, K_FOREVER);
if (ura != data->ura) {
/* Instruction Byte 1 + Upper Address Byte */
tx_buf[i].buf = inst1_uab;
tx_buf[i].len = sizeof(inst1_uab);
i++;
}
/* Instruction Byte 2 */
inst2 |= lmp90xxx_inst2_sz(len);
tx_buf[i].buf = &inst2;
tx_buf[i].len = sizeof(inst2);
i++;
/* Data Byte(s) */
tx_buf[i].buf = dptr;
tx_buf[i].len = len;
i++;
tx.buffers = tx_buf;
tx.count = i;
err = spi_write(data->spi_dev, &config->spi_cfg, &tx);
if (!err) {
data->ura = ura;
} else {
/* Force INST1 + UAB on next access */
data->ura = LMP90XXX_INVALID_URA;
}
k_mutex_unlock(&data->ura_lock);
return err;
}
static int lmp90xxx_write_reg8(struct device *dev, uint8_t addr, uint8_t val)
{
return lmp90xxx_write_reg(dev, addr, &val, sizeof(val));
}
static int lmp90xxx_soft_reset(struct device *dev)
{
int err;
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_RESETCN,
LMP90XXX_REG_AND_CNV_RST);
if (err) {
return err;
}
/* Write to RESETCN twice in order to reset mode as well as registers */
return lmp90xxx_write_reg8(dev, LMP90XXX_REG_RESETCN,
LMP90XXX_REG_AND_CNV_RST);
}
static inline bool lmp90xxx_has_channel(struct device *dev, uint8_t channel)
{
const struct lmp90xxx_config *config = dev->config_info;
if (channel >= config->channels) {
return false;
} else {
return true;
}
}
static inline bool lmp90xxx_has_input(struct device *dev, uint8_t input)
{
const struct lmp90xxx_config *config = dev->config_info;
if (input >= LMP90XXX_MAX_INPUTS) {
return false;
} else if (config->channels < LMP90XXX_MAX_CHANNELS &&
(input >= 3 && input <= 5)) {
/* This device only has inputs 0, 1, 2, 6, and 7 */
return false;
} else {
return true;
}
}
static inline int lmp90xxx_acq_time_to_odr(uint16_t acq_time)
{
uint16_t acq_value;
if (acq_time == ADC_ACQ_TIME_DEFAULT) {
return LMP90XXX_DEFAULT_ODR;
}
if (ADC_ACQ_TIME_UNIT(acq_time) != ADC_ACQ_TIME_TICKS) {
return -EINVAL;
}
/*
* The LMP90xxx supports odd (and very slow) output data
* rates. Allow the caller to specify the ODR directly using
* ADC_ACQ_TIME_TICKS
*/
acq_value = ADC_ACQ_TIME_VALUE(acq_time);
if (acq_value <= LMP90XXX_DEFAULT_ODR) {
return acq_value;
}
return -EINVAL;
}
static int lmp90xxx_adc_channel_setup(struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
struct lmp90xxx_data *data = dev->driver_data;
uint8_t chx_inputcn = LMP90XXX_BURNOUT_EN(0); /* No burnout currents */
uint8_t chx_config = LMP90XXX_BUF_EN(0); /* No buffer */
uint8_t payload[2];
uint8_t addr;
int ret;
switch (channel_cfg->reference) {
case ADC_REF_EXTERNAL0:
chx_inputcn |= LMP90XXX_VREF_SEL(0);
break;
case ADC_REF_EXTERNAL1:
chx_inputcn |= LMP90XXX_VREF_SEL(1);
break;
default:
LOG_ERR("unsupported channel reference type '%d'",
channel_cfg->reference);
return -ENOTSUP;
}
if (!lmp90xxx_has_channel(dev, channel_cfg->channel_id)) {
LOG_ERR("unsupported channel id '%d'", channel_cfg->channel_id);
return -ENOTSUP;
}
if (!lmp90xxx_has_input(dev, channel_cfg->input_positive)) {
LOG_ERR("unsupported positive input '%d'",
channel_cfg->input_positive);
return -ENOTSUP;
}
chx_inputcn |= LMP90XXX_VINP(channel_cfg->input_positive);
if (!lmp90xxx_has_input(dev, channel_cfg->input_negative)) {
LOG_ERR("unsupported negative input '%d'",
channel_cfg->input_negative);
return -ENOTSUP;
}
chx_inputcn |= LMP90XXX_VINN(channel_cfg->input_negative);
ret = lmp90xxx_acq_time_to_odr(channel_cfg->acquisition_time);
if (ret < 0) {
LOG_ERR("unsupported channel acquisition time 0x%02x",
channel_cfg->acquisition_time);
return -ENOTSUP;
}
chx_config |= LMP90XXX_ODR_SEL(ret);
data->channel_odr[channel_cfg->channel_id] = ret;
switch (channel_cfg->gain) {
case ADC_GAIN_1:
chx_config |= LMP90XXX_GAIN_SEL(0);
break;
case ADC_GAIN_2:
chx_config |= LMP90XXX_GAIN_SEL(1);
break;
case ADC_GAIN_4:
chx_config |= LMP90XXX_GAIN_SEL(2);
break;
case ADC_GAIN_8:
chx_config |= LMP90XXX_GAIN_SEL(3);
break;
case ADC_GAIN_16:
chx_config |= LMP90XXX_GAIN_SEL(4);
break;
case ADC_GAIN_32:
chx_config |= LMP90XXX_GAIN_SEL(5);
break;
case ADC_GAIN_64:
chx_config |= LMP90XXX_GAIN_SEL(6);
break;
case ADC_GAIN_128:
chx_config |= LMP90XXX_GAIN_SEL(7);
break;
default:
LOG_ERR("unsupported channel gain '%d'", channel_cfg->gain);
return -ENOTSUP;
}
payload[0] = chx_inputcn;
payload[1] = chx_config;
addr = LMP90XXX_REG_CH_INPUTCN(channel_cfg->channel_id);
ret = lmp90xxx_write_reg(dev, addr, payload, sizeof(payload));
if (ret) {
LOG_ERR("failed to configure channel (err %d)", ret);
}
return ret;
}
static int lmp90xxx_validate_buffer_size(const struct adc_sequence *sequence)
{
uint8_t channels = 0;
size_t needed;
uint32_t mask;
for (mask = BIT(LMP90XXX_MAX_CHANNELS - 1); mask != 0; mask >>= 1) {
if (mask & sequence->channels) {
channels++;
}
}
needed = channels * sizeof(int32_t);
if (sequence->options) {
needed *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < needed) {
return -ENOMEM;
}
return 0;
}
static int lmp90xxx_adc_start_read(struct device *dev,
const struct adc_sequence *sequence)
{
const struct lmp90xxx_config *config = dev->config_info;
struct lmp90xxx_data *data = dev->driver_data;
int err;
if (sequence->resolution != config->resolution) {
LOG_ERR("unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
if (!lmp90xxx_has_channel(dev, find_msb_set(sequence->channels) - 1)) {
LOG_ERR("unsupported channels in mask: 0x%08x",
sequence->channels);
return -ENOTSUP;
}
err = lmp90xxx_validate_buffer_size(sequence);
if (err) {
LOG_ERR("buffer size too small");
return err;
}
data->buffer = sequence->buffer;
data->calibrate = sequence->calibrate;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int lmp90xxx_adc_read_async(struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct lmp90xxx_data *data = dev->driver_data;
int err;
adc_context_lock(&data->ctx, async ? true : false, async);
err = lmp90xxx_adc_start_read(dev, sequence);
adc_context_release(&data->ctx, err);
return err;
}
static int lmp90xxx_adc_read(struct device *dev,
const struct adc_sequence *sequence)
{
return lmp90xxx_adc_read_async(dev, sequence, NULL);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct lmp90xxx_data *data =
CONTAINER_OF(ctx, struct lmp90xxx_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
k_sem_give(&data->acq_sem);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct lmp90xxx_data *data =
CONTAINER_OF(ctx, struct lmp90xxx_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int lmp90xxx_adc_read_channel(struct device *dev, uint8_t channel,
int32_t *result)
{
const struct lmp90xxx_config *config = dev->config_info;
struct lmp90xxx_data *data = dev->driver_data;
uint8_t adc_done;
uint8_t ch_scan;
uint8_t buf[4]; /* ADC_DOUT + CRC */
int32_t delay;
uint8_t odr;
int err;
/* Single channel, single scan mode */
ch_scan = LMP90XXX_CH_SCAN_SEL(0x1) | LMP90XXX_FIRST_CH(channel) |
LMP90XXX_LAST_CH(channel);
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_CH_SCAN, ch_scan);
if (err) {
LOG_ERR("failed to setup scan channels (err %d)", err);
return err;
}
/* Start scan */
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_PWRCN, LMP90XXX_PWRCN(0));
if (err) {
LOG_ERR("failed to set active mode (err %d)", err);
return err;
}
if (LMP90XXX_HAS_DRDYB(config)) {
k_sem_take(&data->drdyb_sem, K_FOREVER);
} else {
odr = data->channel_odr[channel];
delay = lmp90xxx_odr_delay_tbl[odr];
LOG_DBG("sleeping for %d ms", delay);
k_msleep(delay);
/* Poll for data ready */
do {
err = lmp90xxx_read_reg8(dev, LMP90XXX_REG_ADC_DONE,
&adc_done);
if (adc_done == 0xFFU) {
LOG_DBG("sleeping for 1 ms");
k_msleep(1);
} else {
break;
}
} while (true);
}
if (IS_ENABLED(CONFIG_ADC_LMP90XXX_CRC)) {
err = lmp90xxx_read_reg(dev, LMP90XXX_REG_ADC_DOUT, buf,
sizeof(buf));
} else {
err = lmp90xxx_read_reg(dev, LMP90XXX_REG_ADC_DOUT, buf,
config->resolution / 8);
}
if (err) {
LOG_ERR("failed to read ADC DOUT (err %d)", err);
return err;
}
if (IS_ENABLED(CONFIG_ADC_LMP90XXX_CRC)) {
uint8_t crc = crc8(buf, 3, 0x31, 0, false) ^ 0xFFU;
if (buf[3] != crc) {
LOG_ERR("CRC mismatch (0x%02x vs. 0x%02x)", buf[3],
crc);
return err;
}
}
/* Read result, get rid of CRC, and sign extend result */
*result = (int32_t)sys_get_be32(buf);
*result >>= (32 - config->resolution);
return 0;
}
static void lmp90xxx_acquisition_thread(struct device *dev)
{
struct lmp90xxx_data *data = dev->driver_data;
uint8_t bgcalcn = LMP90XXX_BGCALN(0x3); /* Default to BgCalMode3 */
int32_t result = 0;
uint8_t channel;
int err;
while (true) {
k_sem_take(&data->acq_sem, K_FOREVER);
if (data->calibrate) {
/* Use BgCalMode2 */
bgcalcn = LMP90XXX_BGCALN(0x2);
}
LOG_DBG("using BGCALCN = 0x%02x", bgcalcn);
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_BGCALCN, bgcalcn);
if (err) {
LOG_ERR("failed to setup background calibration "
"(err %d)", err);
adc_context_complete(&data->ctx, err);
break;
}
while (data->channels) {
channel = find_lsb_set(data->channels) - 1;
LOG_DBG("reading channel %d", channel);
err = lmp90xxx_adc_read_channel(dev, channel, &result);
if (err) {
adc_context_complete(&data->ctx, err);
break;
}
LOG_DBG("finished channel %d, result = %d", channel,
result);
/*
* ADC samples are stored as int32_t regardless of the
* resolution in order to provide a uniform interface
* for the driver.
*/
*data->buffer++ = result;
WRITE_BIT(data->channels, channel, 0);
}
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static void lmp90xxx_drdyb_callback(struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct lmp90xxx_data *data =
CONTAINER_OF(cb, struct lmp90xxx_data, drdyb_cb);
/* Signal thread that data is now ready */
k_sem_give(&data->drdyb_sem);
}
#ifdef CONFIG_ADC_LMP90XXX_GPIO
int lmp90xxx_gpio_set_output(struct device *dev, uint8_t pin)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
if (pin > LMP90XXX_GPIO_MAX) {
return -EINVAL;
}
k_mutex_lock(&data->gpio_lock, K_FOREVER);
tmp = data->gpio_dircn | BIT(pin);
if (tmp != data->gpio_dircn) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DIRCN, tmp);
if (!err) {
data->gpio_dircn = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_set_input(struct device *dev, uint8_t pin)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
if (pin > LMP90XXX_GPIO_MAX) {
return -EINVAL;
}
k_mutex_lock(&data->gpio_lock, K_FOREVER);
tmp = data->gpio_dircn & ~BIT(pin);
if (tmp != data->gpio_dircn) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DIRCN, tmp);
if (!err) {
data->gpio_dircn = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_set_pin_value(struct device *dev, uint8_t pin, bool value)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
if (pin > LMP90XXX_GPIO_MAX) {
return -EINVAL;
}
k_mutex_lock(&data->gpio_lock, K_FOREVER);
tmp = data->gpio_dat;
WRITE_BIT(tmp, pin, value);
if (tmp != data->gpio_dat) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DAT, tmp);
if (!err) {
data->gpio_dat = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_get_pin_value(struct device *dev, uint8_t pin, bool *value)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
if (pin > LMP90XXX_GPIO_MAX) {
return -EINVAL;
}
k_mutex_lock(&data->gpio_lock, K_FOREVER);
err = lmp90xxx_read_reg8(dev, LMP90XXX_REG_GPIO_DAT, &tmp);
if (!err) {
*value = tmp & BIT(pin);
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_port_get_raw(struct device *dev, gpio_port_value_t *value)
{
struct lmp90xxx_data *data = dev->driver_data;
uint8_t tmp;
int err;
k_mutex_lock(&data->gpio_lock, K_FOREVER);
err = lmp90xxx_read_reg8(dev, LMP90XXX_REG_GPIO_DAT, &tmp);
tmp &= ~(data->gpio_dircn);
k_mutex_unlock(&data->gpio_lock);
*value = tmp;
return err;
}
int lmp90xxx_gpio_port_set_masked_raw(struct device *dev,
gpio_port_pins_t mask,
gpio_port_value_t value)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
mask &= LMP90XXX_GPIO_DAT_MASK;
k_mutex_lock(&data->gpio_lock, K_FOREVER);
tmp = (data->gpio_dat & ~mask) | (value & mask);
if (tmp != data->gpio_dat) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DAT, tmp);
if (!err) {
data->gpio_dat = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_port_set_bits_raw(struct device *dev, gpio_port_pins_t pins)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
tmp = pins & LMP90XXX_GPIO_DAT_MASK;
k_mutex_lock(&data->gpio_lock, K_FOREVER);
if (tmp != data->gpio_dat) {
tmp |= data->gpio_dat;
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DAT, tmp);
if (!err) {
data->gpio_dat = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_port_clear_bits_raw(struct device *dev,
gpio_port_pins_t pins)
{
struct lmp90xxx_data *data = dev->driver_data;
int err = 0;
uint8_t tmp;
tmp = pins & LMP90XXX_GPIO_DAT_MASK;
k_mutex_lock(&data->gpio_lock, K_FOREVER);
if ((tmp & data->gpio_dat) != 0) {
tmp = data->gpio_dat & ~tmp;
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DAT, tmp);
if (!err) {
data->gpio_dat = tmp;
}
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
int lmp90xxx_gpio_port_toggle_bits(struct device *dev, gpio_port_pins_t pins)
{
struct lmp90xxx_data *data = dev->driver_data;
uint8_t tmp;
int err;
tmp = pins & LMP90XXX_GPIO_DAT_MASK;
k_mutex_lock(&data->gpio_lock, K_FOREVER);
tmp ^= data->gpio_dat;
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_GPIO_DAT, tmp);
if (!err) {
data->gpio_dat = tmp;
}
k_mutex_unlock(&data->gpio_lock);
return err;
}
#endif /* CONFIG_ADC_LMP90XXX_GPIO */
static int lmp90xxx_init(struct device *dev)
{
const struct lmp90xxx_config *config = dev->config_info;
struct lmp90xxx_data *data = dev->driver_data;
struct device *drdyb_dev;
k_tid_t tid;
int err;
k_mutex_init(&data->ura_lock);
k_sem_init(&data->acq_sem, 0, 1);
k_sem_init(&data->drdyb_sem, 0, 1);
#ifdef CONFIG_ADC_LMP90XXX_GPIO
k_mutex_init(&data->gpio_lock);
#endif /* CONFIG_ADC_LMP90XXX_GPIO */
/* Force INST1 + UAB on first access */
data->ura = LMP90XXX_INVALID_URA;
data->spi_dev = device_get_binding(config->spi_dev_name);
if (!data->spi_dev) {
LOG_ERR("SPI master device '%s' not found",
config->spi_dev_name);
return -EINVAL;
}
if (config->spi_cs_dev_name) {
data->spi_cs.gpio_dev =
device_get_binding(config->spi_cs_dev_name);
if (!data->spi_cs.gpio_dev) {
LOG_ERR("SPI CS GPIO device '%s' not found",
config->spi_cs_dev_name);
return -EINVAL;
}
data->spi_cs.gpio_pin = config->spi_cs_pin;
}
err = lmp90xxx_soft_reset(dev);
if (err) {
LOG_ERR("failed to request soft reset (err %d)", err);
return err;
}
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_SPI_HANDSHAKECN,
LMP90XXX_SDO_DRDYB_DRIVER(0x4));
if (err) {
LOG_ERR("failed to set SPI handshake control (err %d)",
err);
return err;
}
if (config->rtd_current) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_ADC_AUXCN,
LMP90XXX_RTD_CUR_SEL(config->rtd_current));
if (err) {
LOG_ERR("failed to set RTD current (err %d)", err);
return err;
}
}
if (IS_ENABLED(CONFIG_ADC_LMP90XXX_CRC)) {
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_SPI_CRC_CN,
LMP90XXX_EN_CRC(1) |
LMP90XXX_DRDYB_AFT_CRC(1));
if (err) {
LOG_ERR("failed to enable CRC (err %d)", err);
return err;
}
}
if (LMP90XXX_HAS_DRDYB(config)) {
drdyb_dev = device_get_binding(config->drdyb_dev_name);
if (!drdyb_dev) {
LOG_ERR("DRDYB GPIO device '%s' not found",
config->drdyb_dev_name);
return -EINVAL;
}
err = gpio_pin_configure(drdyb_dev, config->drdyb_pin,
GPIO_INPUT | config->drdyb_flags);
if (err) {
LOG_ERR("failed to configure DRDYB GPIO pin (err %d)",
err);
return -EINVAL;
}
gpio_init_callback(&data->drdyb_cb, lmp90xxx_drdyb_callback,
BIT(config->drdyb_pin));
err = gpio_add_callback(drdyb_dev, &data->drdyb_cb);
if (err) {
LOG_ERR("failed to add DRDYB callback (err %d)", err);
return -EINVAL;
}
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_SPI_DRDYBCN,
LMP90XXX_SPI_DRDYB_D6(1));
if (err) {
LOG_ERR("failed to configure D6 as DRDYB (err %d)",
err);
return err;
}
err = gpio_pin_interrupt_configure(drdyb_dev, config->drdyb_pin,
GPIO_INT_EDGE_TO_ACTIVE);
if (err) {
LOG_ERR("failed to configure DRDBY interrupt (err %d)",
err);
return -EINVAL;
}
}
tid = k_thread_create(&data->thread, data->stack,
CONFIG_ADC_LMP90XXX_ACQUISITION_THREAD_STACK_SIZE,
(k_thread_entry_t)lmp90xxx_acquisition_thread,
dev, NULL, NULL,
CONFIG_ADC_LMP90XXX_ACQUISITION_THREAD_PRIO,
0, K_NO_WAIT);
k_thread_name_set(tid, "adc_lmp90xxx");
/* Put device in stand-by to prepare it for single-shot conversion */
err = lmp90xxx_write_reg8(dev, LMP90XXX_REG_PWRCN, LMP90XXX_PWRCN(0x3));
if (err) {
LOG_ERR("failed to request stand-by mode (err %d)", err);
return err;
}
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api lmp90xxx_adc_api = {
.channel_setup = lmp90xxx_adc_channel_setup,
.read = lmp90xxx_adc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = lmp90xxx_adc_read_async,
#endif
};
#define ASSERT_LMP90XXX_CURRENT_VALID(v) \
BUILD_ASSERT(v == 0 || v == 100 || v == 200 || v == 300 || \
v == 400 || v == 500 || v == 600 || v == 700 || \
v == 800 || v == 900 || v == 1000, \
"unsupported RTD current (" #v ")")
#define LMP90XXX_UAMPS_TO_RTD_CUR_SEL(x) (x / 100)
#define DT_INST_LMP90XXX(inst, t) DT_INST(inst, ti_lmp##t)
#define LMP90XXX_DEVICE(t, n, res, ch) \
ASSERT_LMP90XXX_CURRENT_VALID(UTIL_AND( \
DT_NODE_HAS_PROP(DT_INST_LMP90XXX(n, t), rtd_current), \
DT_PROP(DT_INST_LMP90XXX(n, t), rtd_current))); \
static struct lmp90xxx_data lmp##t##_data_##n = { \
ADC_CONTEXT_INIT_TIMER(lmp##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(lmp##t##_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(lmp##t##_data_##n, ctx), \
}; \
static const struct lmp90xxx_config lmp##t##_config_##n = { \
.spi_dev_name = DT_BUS_LABEL(DT_INST_LMP90XXX(n, t)), \
.spi_cs_dev_name = UTIL_AND( \
DT_SPI_DEV_HAS_CS_GPIOS(DT_INST_LMP90XXX(n, t)), \
DT_SPI_DEV_CS_GPIOS_LABEL(DT_INST_LMP90XXX(n, t)) \
), \
.spi_cs_pin = UTIL_AND( \
DT_SPI_DEV_HAS_CS_GPIOS(DT_INST_LMP90XXX(n, t)), \
DT_SPI_DEV_CS_GPIOS_PIN(DT_INST_LMP90XXX(n, t)) \
), \
.spi_cfg = { \
.operation = (SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | \
SPI_WORD_SET(8)), \
.frequency = DT_PROP(DT_INST_LMP90XXX(n, t), \
spi_max_frequency), \
.slave = DT_REG_ADDR(DT_INST_LMP90XXX(n, t)), \
.cs = &lmp##t##_data_##n.spi_cs, \
}, \
.drdyb_dev_name = UTIL_AND( \
DT_NODE_HAS_PROP(DT_INST_LMP90XXX(n, t), drdyb_gpios), \
DT_GPIO_LABEL(DT_INST_LMP90XXX(n, t), drdyb_gpios) \
), \
.drdyb_pin = UTIL_AND( \
DT_NODE_HAS_PROP(DT_INST_LMP90XXX(n, t), drdyb_gpios), \
DT_GPIO_PIN(DT_INST_LMP90XXX(n, t), drdyb_gpios) \
), \
.drdyb_flags = UTIL_AND( \
DT_NODE_HAS_PROP(DT_INST_LMP90XXX(n, t), drdyb_gpios), \
DT_GPIO_FLAGS(DT_INST_LMP90XXX(n, t), drdyb_gpios) \
), \
.rtd_current = UTIL_AND( \
DT_NODE_HAS_PROP(DT_INST_LMP90XXX(n, t), rtd_current), \
LMP90XXX_UAMPS_TO_RTD_CUR_SEL( \
DT_PROP(DT_INST_LMP90XXX(n, t), rtd_current)) \
), \
.resolution = res, \
.channels = ch, \
}; \
DEVICE_AND_API_INIT(lmp##t##_##n, \
DT_LABEL(DT_INST_LMP90XXX(n, t)), \
&lmp90xxx_init, &lmp##t##_data_##n, \
&lmp##t##_config_##n, POST_KERNEL, \
CONFIG_ADC_LMP90XXX_INIT_PRIORITY, \
&lmp90xxx_adc_api)
/*
* LMP90077: 16 bit, 2 diff/4 se (4 channels), 0 currents
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90077)
LMP90XXX_DEVICE(90077, 0, 16, 4);
#endif
/*
* LMP90078: 16 bit, 2 diff/4 se (4 channels), 2 currents
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90078)
LMP90XXX_DEVICE(90078, 0, 16, 4);
#endif
/*
* LMP90079: 16 bit, 4 diff/7 se (7 channels), 0 currents, has VIN3-5
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90079)
LMP90XXX_DEVICE(90079, 0, 16, 7);
#endif
/*
* LMP90080: 16 bit, 4 diff/7 se (7 channels), 2 currents, has VIN3-5
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90080)
LMP90XXX_DEVICE(90080, 0, 16, 7);
#endif
/*
* LMP90097: 24 bit, 2 diff/4 se (4 channels), 0 currents
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90097)
LMP90XXX_DEVICE(90097, 0, 24, 4);
#endif
/*
* LMP90098: 24 bit, 2 diff/4 se (4 channels), 2 currents
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90098)
LMP90XXX_DEVICE(90098, 0, 24, 4);
#endif
/*
* LMP90099: 24 bit, 4 diff/7 se (7 channels), 0 currents, has VIN3-5
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90099)
LMP90XXX_DEVICE(90099, 0, 24, 7);
#endif
/*
* LMP90100: 24 bit, 4 diff/7 se (7 channels), 2 currents, has VIN3-5
*/
#if DT_HAS_COMPAT_STATUS_OKAY(ti_lmp90100)
LMP90XXX_DEVICE(90100, 0, 24, 7);
#endif