zephyr/include/posix/pthread.h

457 lines
11 KiB
C

/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef __PTHREAD_H__
#define __PTHREAD_H__
#include <kernel.h>
#ifdef CONFIG_NEWLIB_LIBC
#include <time.h>
#else
/* This should probably live somewhere else but Zephyr doesn't
* currently have a stdc layer to provide it
*/
struct timespec {
s32_t tv_sec;
s32_t tv_nsec;
};
#endif /* CONFIG_NEWLIB_LIBC */
#include "sys/types.h"
#include "sched.h"
enum pthread_state {
/* The thread is running and joinable. */
PTHREAD_JOINABLE = 0,
/* The thread is running and detached. */
PTHREAD_DETACHED,
/* A joinable thread exited and its return code is available. */
PTHREAD_EXITED,
/* The thread structure is unallocated and available for reuse. */
PTHREAD_TERMINATED
};
struct posix_thread {
struct k_thread thread;
/* Exit status */
void *retval;
/* Pthread cancellation */
int cancel_state;
int cancel_pending;
struct k_sem cancel_lock_sem;
pthread_mutex_t cancel_lock;
/* Pthread State */
enum pthread_state state;
pthread_mutex_t state_lock;
struct k_sem state_lock_sem;
pthread_cond_t state_cond;
};
/* Pthread detach/joinable */
#define PTHREAD_CREATE_JOINABLE 0
#define PTHREAD_CREATE_DETACHED 1
/* Pthread cancellation */
#define _PTHREAD_CANCEL_POS 0
#define PTHREAD_CANCEL_ENABLE (0 << _PTHREAD_CANCEL_POS)
#define PTHREAD_CANCEL_DISABLE (1 << _PTHREAD_CANCEL_POS)
static inline s32_t _ts_to_ms(const struct timespec *to)
{
return (to->tv_sec * 1000) + (to->tv_nsec / 1000000);
}
/**
* @brief Declare a pthread condition variable
*
* Declaration API for a pthread condition variable. This is not a
* POSIX API, it's provided to better conform with Zephyr's allocation
* strategies for kernel objects.
*
* @param name Symbol name of the condition variable
*/
#define PTHREAD_COND_DEFINE(name) \
struct pthread_cond name = { \
.wait_q = SYS_DLIST_STATIC_INIT(&name.wait_q), \
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_cond_init(pthread_cond_t *cv,
const pthread_condattr_t *att)
{
ARG_UNUSED(att);
sys_dlist_init(&cv->wait_q);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_cond_destroy(pthread_cond_t *cv)
{
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_cond_signal(pthread_cond_t *cv);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_cond_broadcast(pthread_cond_t *cv);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_cond_wait(pthread_cond_t *cv, pthread_mutex_t *mut);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_cond_timedwait(pthread_cond_t *cv, pthread_mutex_t *mut,
const struct timespec *to);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1.
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_condattr_init(pthread_condattr_t *att)
{
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_condattr_destroy(pthread_condattr_t *att)
{
return 0;
}
/**
* @brief Declare a pthread mutex
*
* Declaration API for a pthread mutex. This is not a POSIX API, it's
* provided to better conform with Zephyr's allocation strategies for
* kernel objects.
*
* @param name Symbol name of the mutex
*/
#define PTHREAD_MUTEX_DEFINE(name) \
K_SEM_DEFINE(name##_psem, 1, 1); \
struct pthread_mutex name = { \
.sem = &name##_psem, \
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_mutex_init(pthread_mutex_t *m,
const pthread_mutexattr_t *att)
{
ARG_UNUSED(att);
k_sem_init(m->sem, 1, 1);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_mutex_destroy(pthread_mutex_t *m)
{
ARG_UNUSED(m);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_mutex_lock(pthread_mutex_t *m)
{
return k_sem_take(m->sem, K_FOREVER);
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_mutex_timedlock(pthread_mutex_t *m,
const struct timespec *to)
{
int ret = k_sem_take(m->sem, _ts_to_ms(to));
return ret == 0 ? ret : ETIMEDOUT;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_mutex_trylock(pthread_mutex_t *m);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_mutex_unlock(pthread_mutex_t *m)
{
k_sem_give(m->sem);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_mutexattr_init(pthread_mutexattr_t *m)
{
ARG_UNUSED(m);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_mutexattr_destroy(pthread_mutexattr_t *m)
{
ARG_UNUSED(m);
return 0;
}
/* FIXME: these are going to be tricky to implement. Zephyr has (for
* good reason) deprecated its own "initializer" macros in favor of a
* static "declaration" macros instead. Using such a macro inside a
* gcc compound expression to declare and object then reference it
* would work, but gcc limits such expressions to function context
* (because they may need to generate code that runs at assignment
* time) and much real-world use of these initializers is for static
* variables. The best trick I can think of would be to declare it in
* a special section and then initialize that section at runtime
* startup, which sort of defeats the purpose of having these be
* static...
*
* Instead, see the nonstandard PTHREAD_*_DEFINE macros instead, which
* work similarly but conform to Zephyr's paradigms.
*/
/* #define PTHREAD_MUTEX_INITIALIZER */
/* #define PTHREAD_COND_INITIALIZER */
/**
* @brief Declare a pthread barrier
*
* Declaration API for a pthread barrier. This is not a
* POSIX API, it's provided to better conform with Zephyr's allocation
* strategies for kernel objects.
*
* @param name Symbol name of the barrier
* @param count Thread count, same as the "count" argument to
* pthread_barrier_init()
*/
#define PTHREAD_BARRIER_DEFINE(name, count) \
struct pthread_barrier name = { \
.wait_q = SYS_DLIST_STATIC_INIT(&name.wait_q), \
.max = count, \
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
int pthread_barrier_wait(pthread_barrier_t *b);
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_barrier_init(pthread_barrier_t *b,
const pthread_barrierattr_t *attr,
unsigned int count)
{
ARG_UNUSED(attr);
b->max = count;
b->count = 0;
sys_dlist_init(&b->wait_q);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*/
static inline int pthread_barrier_destroy(pthread_barrier_t *b)
{
ARG_UNUSED(b);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_barrierattr_init(pthread_barrierattr_t *b)
{
ARG_UNUSED(b);
return 0;
}
/**
* @brief POSIX threading compatibility API
*
* See IEEE 1003.1
*
* Note that pthread attribute structs are currently noops in Zephyr.
*/
static inline int pthread_barrierattr_destroy(pthread_barrierattr_t *b)
{
ARG_UNUSED(b);
return 0;
}
/* Predicates and setters for various pthread attribute values that we
* don't support (or always support: the "process shared" attribute
* can only be true given the way Zephyr implements these
* objects). Leave these undefined for simplicity instead of defining
* stubs to return an error that would have to be logged and
* interpreted just to figure out that we didn't support it in the
* first place. These APIs are very rarely used even in production
* Unix code. Leave the declarations here so they can be easily
* uncommented and implemented as needed.
int pthread_condattr_getclock(const pthread_condattr_t * clockid_t *);
int pthread_condattr_getpshared(const pthread_condattr_t * int *);
int pthread_condattr_setclock(pthread_condattr_t *, clockid_t);
int pthread_condattr_setpshared(pthread_condattr_t *, int);
int pthread_mutex_consistent(pthread_mutex_t *);
int pthread_mutex_getprioceiling(const pthread_mutex_t * int *);
int pthread_mutex_setprioceiling(pthread_mutex_t *, int int *);
int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *, int *);
int pthread_mutexattr_getprotocol(const pthread_mutexattr_t * int *);
int pthread_mutexattr_getpshared(const pthread_mutexattr_t * int *);
int pthread_mutexattr_getrobust(const pthread_mutexattr_t * int *);
int pthread_mutexattr_gettype(const pthread_mutexattr_t * int *);
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *, int);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *, int);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *, int);
int pthread_mutexattr_setrobust(pthread_mutexattr_t *, int);
int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
int pthread_barrierattr_getpshared(const pthread_barrierattr_t *, int *);
int pthread_barrierattr_setpshared(pthread_barrierattr_t *, int);
*/
/* Base Pthread related APIs */
/**
* @brief Obtain ID of the calling thread.
*
* The results of calling this API from threads not created with
* pthread_create() are undefined.
*
* See IEEE 1003.1
*/
static inline pthread_t pthread_self(void)
{
return (pthread_t)k_current_get();
}
/**
* @brief Compare thread IDs.
*
* See IEEE 1003.1
*/
static inline int pthread_equal(pthread_t pt1, pthread_t pt2)
{
return (pt1 == pt2);
}
int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_getschedparam(const pthread_attr_t *attr,
struct sched_param *schedparam);
int pthread_getschedparam(pthread_t pthread, int *policy,
struct sched_param *param);
int pthread_attr_getstack(const pthread_attr_t *attr,
void **stackaddr, size_t *stacksize);
int pthread_attr_setstack(pthread_attr_t *attr, void *stackaddr,
size_t stacksize);
void pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **status);
int pthread_cancel(pthread_t pthread);
int pthread_detach(pthread_t thread);
int pthread_create(pthread_t *newthread, const pthread_attr_t *attr,
void *(*threadroutine)(void *), void *arg);
int pthread_setcancelstate(int state, int *oldstate);
int pthread_attr_setschedparam(pthread_attr_t *attr,
const struct sched_param *schedparam);
int pthread_setschedparam(pthread_t pthread, int policy,
const struct sched_param *param);
#endif /* __PTHREAD_H__ */