669 lines
16 KiB
C
669 lines
16 KiB
C
/*
|
|
* Copyright (c) 2010-2014 Wind River Systems, Inc.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* @brief Kernel thread support
|
|
*
|
|
* This module provides general purpose thread support.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
|
|
#include <toolchain.h>
|
|
#include <linker/sections.h>
|
|
|
|
#include <kernel_structs.h>
|
|
#include <misc/printk.h>
|
|
#include <sys_clock.h>
|
|
#include <drivers/system_timer.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
#include <atomic.h>
|
|
#include <syscall_handler.h>
|
|
#include <kernel_internal.h>
|
|
#include <kswap.h>
|
|
#include <init.h>
|
|
|
|
extern struct _static_thread_data _static_thread_data_list_start[];
|
|
extern struct _static_thread_data _static_thread_data_list_end[];
|
|
|
|
#define _FOREACH_STATIC_THREAD(thread_data) \
|
|
for (struct _static_thread_data *thread_data = \
|
|
_static_thread_data_list_start; \
|
|
thread_data < _static_thread_data_list_end; \
|
|
thread_data++)
|
|
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
|
|
{
|
|
struct k_thread *thread;
|
|
unsigned int key;
|
|
|
|
__ASSERT(user_cb, "user_cb can not be NULL");
|
|
|
|
/*
|
|
* Lock is needed to make sure that the _kernel.threads is not being
|
|
* modified by the user_cb either dircetly or indircetly.
|
|
* The indircet ways are through calling k_thread_create and
|
|
* k_thread_abort from user_cb.
|
|
*/
|
|
key = irq_lock();
|
|
for (thread = _kernel.threads; thread; thread = thread->next_thread) {
|
|
user_cb(thread, user_data);
|
|
}
|
|
irq_unlock(key);
|
|
}
|
|
#else
|
|
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data) { }
|
|
#endif
|
|
|
|
int k_is_in_isr(void)
|
|
{
|
|
return _is_in_isr();
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as essential to system operation.
|
|
* Exceptions raised by this thread will be treated as a fatal system error.
|
|
*/
|
|
void _thread_essential_set(void)
|
|
{
|
|
_current->base.user_options |= K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This function tags the current thread as not essential to system operation.
|
|
* Exceptions raised by this thread may be recoverable.
|
|
* (This is the default tag for a thread.)
|
|
*/
|
|
void _thread_essential_clear(void)
|
|
{
|
|
_current->base.user_options &= ~K_ESSENTIAL;
|
|
}
|
|
|
|
/*
|
|
* This routine indicates if the current thread is an essential system thread.
|
|
*
|
|
* Returns non-zero if current thread is essential, zero if it is not.
|
|
*/
|
|
int _is_thread_essential(void)
|
|
{
|
|
return _current->base.user_options & K_ESSENTIAL;
|
|
}
|
|
|
|
#if !defined(CONFIG_ARCH_HAS_CUSTOM_BUSY_WAIT)
|
|
void k_busy_wait(u32_t usec_to_wait)
|
|
{
|
|
#if defined(CONFIG_TICKLESS_KERNEL) && \
|
|
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
|
|
int saved_always_on = k_enable_sys_clock_always_on();
|
|
#endif
|
|
/* use 64-bit math to prevent overflow when multiplying */
|
|
u32_t cycles_to_wait = (u32_t)(
|
|
(u64_t)usec_to_wait *
|
|
(u64_t)sys_clock_hw_cycles_per_sec /
|
|
(u64_t)USEC_PER_SEC
|
|
);
|
|
u32_t start_cycles = k_cycle_get_32();
|
|
|
|
for (;;) {
|
|
u32_t current_cycles = k_cycle_get_32();
|
|
|
|
/* this handles the rollover on an unsigned 32-bit value */
|
|
if ((current_cycles - start_cycles) >= cycles_to_wait) {
|
|
break;
|
|
}
|
|
}
|
|
#if defined(CONFIG_TICKLESS_KERNEL) && \
|
|
!defined(CONFIG_BUSY_WAIT_USES_ALTERNATE_CLOCK)
|
|
_sys_clock_always_on = saved_always_on;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_THREAD_CUSTOM_DATA
|
|
void _impl_k_thread_custom_data_set(void *value)
|
|
{
|
|
_current->custom_data = value;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_custom_data_set, data)
|
|
{
|
|
_impl_k_thread_custom_data_set((void *)data);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void *_impl_k_thread_custom_data_get(void)
|
|
{
|
|
return _current->custom_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER0_SIMPLE(k_thread_custom_data_get);
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_THREAD_CUSTOM_DATA */
|
|
|
|
#if defined(CONFIG_THREAD_MONITOR)
|
|
/*
|
|
* Remove a thread from the kernel's list of active threads.
|
|
*/
|
|
void _thread_monitor_exit(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
if (thread == _kernel.threads) {
|
|
_kernel.threads = _kernel.threads->next_thread;
|
|
} else {
|
|
struct k_thread *prev_thread;
|
|
|
|
prev_thread = _kernel.threads;
|
|
while (prev_thread != NULL &&
|
|
thread != prev_thread->next_thread) {
|
|
prev_thread = prev_thread->next_thread;
|
|
}
|
|
if (prev_thread != NULL) {
|
|
prev_thread->next_thread = thread->next_thread;
|
|
}
|
|
}
|
|
|
|
irq_unlock(key);
|
|
}
|
|
#endif /* CONFIG_THREAD_MONITOR */
|
|
|
|
#ifdef CONFIG_STACK_SENTINEL
|
|
/* Check that the stack sentinel is still present
|
|
*
|
|
* The stack sentinel feature writes a magic value to the lowest 4 bytes of
|
|
* the thread's stack when the thread is initialized. This value gets checked
|
|
* in a few places:
|
|
*
|
|
* 1) In k_yield() if the current thread is not swapped out
|
|
* 2) After servicing a non-nested interrupt
|
|
* 3) In _Swap(), check the sentinel in the outgoing thread
|
|
*
|
|
* Item 2 requires support in arch/ code.
|
|
*
|
|
* If the check fails, the thread will be terminated appropriately through
|
|
* the system fatal error handler.
|
|
*/
|
|
void _check_stack_sentinel(void)
|
|
{
|
|
u32_t *stack;
|
|
|
|
if (_current->base.thread_state & _THREAD_DUMMY) {
|
|
return;
|
|
}
|
|
|
|
stack = (u32_t *)_current->stack_info.start;
|
|
if (*stack != STACK_SENTINEL) {
|
|
/* Restore it so further checks don't trigger this same error */
|
|
*stack = STACK_SENTINEL;
|
|
_k_except_reason(_NANO_ERR_STACK_CHK_FAIL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
void _impl_k_thread_start(struct k_thread *thread)
|
|
{
|
|
int key = irq_lock(); /* protect kernel queues */
|
|
|
|
if (_has_thread_started(thread)) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
_mark_thread_as_started(thread);
|
|
_ready_thread(thread);
|
|
_reschedule(key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_start, K_OBJ_THREAD, struct k_thread *);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
static void schedule_new_thread(struct k_thread *thread, s32_t delay)
|
|
{
|
|
#ifdef CONFIG_SYS_CLOCK_EXISTS
|
|
if (delay == 0) {
|
|
k_thread_start(thread);
|
|
} else {
|
|
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(delay);
|
|
int key = irq_lock();
|
|
|
|
_add_thread_timeout(thread, NULL, ticks);
|
|
irq_unlock(key);
|
|
}
|
|
#else
|
|
ARG_UNUSED(delay);
|
|
k_thread_start(thread);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if !CONFIG_STACK_POINTER_RANDOM
|
|
static inline size_t adjust_stack_size(size_t stack_size)
|
|
{
|
|
return stack_size;
|
|
}
|
|
#else
|
|
int z_stack_adjust_initialized;
|
|
|
|
static inline size_t adjust_stack_size(size_t stack_size)
|
|
{
|
|
size_t random_val;
|
|
|
|
if (!z_stack_adjust_initialized) {
|
|
random_val = z_early_boot_rand32_get();
|
|
} else {
|
|
random_val = sys_rand32_get();
|
|
}
|
|
|
|
/* Don't need to worry about alignment of the size here, _new_thread()
|
|
* is required to do it
|
|
*
|
|
* FIXME: Not the best way to get a random number in a range.
|
|
* See #6493
|
|
*/
|
|
const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
|
|
|
|
if (unlikely(fuzz * 2 > stack_size)) {
|
|
return stack_size;
|
|
}
|
|
|
|
return stack_size - fuzz;
|
|
}
|
|
#if defined(CONFIG_STACK_GROWS_UP)
|
|
/* This is so rare not bothering for now */
|
|
#error "Stack pointer randomization not implemented for upward growing stacks"
|
|
#endif /* CONFIG_STACK_GROWS_UP */
|
|
|
|
#endif /* CONFIG_STACK_POINTER_RANDOM */
|
|
|
|
void _setup_new_thread(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack, size_t stack_size,
|
|
k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, u32_t options)
|
|
{
|
|
stack_size = adjust_stack_size(stack_size);
|
|
|
|
_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
|
|
prio, options);
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
new_thread->entry.pEntry = entry;
|
|
new_thread->entry.parameter1 = p1;
|
|
new_thread->entry.parameter2 = p2;
|
|
new_thread->entry.parameter3 = p3;
|
|
|
|
int key = irq_lock();
|
|
|
|
new_thread->next_thread = _kernel.threads;
|
|
_kernel.threads = new_thread;
|
|
irq_unlock(key);
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
_k_object_init(new_thread);
|
|
_k_object_init(stack);
|
|
new_thread->stack_obj = stack;
|
|
|
|
/* Any given thread has access to itself */
|
|
k_object_access_grant(new_thread, new_thread);
|
|
#endif
|
|
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
|
|
/* _current may be null if the dummy thread is not used */
|
|
if (!_current) {
|
|
new_thread->resource_pool = NULL;
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
/* New threads inherit any memory domain membership by the parent */
|
|
if (_current->mem_domain_info.mem_domain) {
|
|
k_mem_domain_add_thread(_current->mem_domain_info.mem_domain,
|
|
new_thread);
|
|
}
|
|
|
|
if (options & K_INHERIT_PERMS) {
|
|
_thread_perms_inherit(_current, new_thread);
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_SCHED_DEADLINE
|
|
new_thread->base.prio_deadline = 0;
|
|
#endif
|
|
new_thread->resource_pool = _current->resource_pool;
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
k_tid_t _impl_k_thread_create(struct k_thread *new_thread,
|
|
k_thread_stack_t *stack,
|
|
size_t stack_size, k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3,
|
|
int prio, u32_t options, s32_t delay)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "Threads may not be created in ISRs");
|
|
_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
|
|
prio, options);
|
|
|
|
if (delay != K_FOREVER) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
return new_thread;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER(k_thread_create,
|
|
new_thread_p, stack_p, stack_size, entry, p1, more_args)
|
|
{
|
|
int prio;
|
|
u32_t options, delay;
|
|
u32_t total_size;
|
|
#ifndef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
|
|
u32_t guard_size;
|
|
#endif
|
|
struct _k_object *stack_object;
|
|
struct k_thread *new_thread = (struct k_thread *)new_thread_p;
|
|
volatile struct _syscall_10_args *margs =
|
|
(volatile struct _syscall_10_args *)more_args;
|
|
k_thread_stack_t *stack = (k_thread_stack_t *)stack_p;
|
|
|
|
/* The thread and stack objects *must* be in an uninitialized state */
|
|
Z_OOPS(Z_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
|
|
stack_object = _k_object_find(stack);
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!_obj_validation_check(stack_object, stack,
|
|
K_OBJ__THREAD_STACK_ELEMENT,
|
|
_OBJ_INIT_FALSE),
|
|
"bad stack object"));
|
|
|
|
#ifndef CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
|
|
/* Verify that the stack size passed in is OK by computing the total
|
|
* size and comparing it with the size value in the object metadata
|
|
*
|
|
* We skip this check for SoCs which utilize MPUs with power of two
|
|
* alignment requirements as the guard is allocated out of the stack
|
|
* size and not allocated in addition to the stack size
|
|
*/
|
|
guard_size = (u32_t)K_THREAD_STACK_BUFFER(stack) - (u32_t)stack;
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(!__builtin_uadd_overflow(guard_size,
|
|
stack_size,
|
|
&total_size),
|
|
"stack size overflow (%u+%u)", stack_size,
|
|
guard_size));
|
|
#else
|
|
total_size = stack_size;
|
|
#endif
|
|
/* They really ought to be equal, make this more strict? */
|
|
Z_OOPS(Z_SYSCALL_VERIFY_MSG(total_size <= stack_object->data,
|
|
"stack size %u is too big, max is %u",
|
|
total_size, stack_object->data));
|
|
|
|
/* Verify the struct containing args 6-10 */
|
|
Z_OOPS(Z_SYSCALL_MEMORY_READ(margs, sizeof(*margs)));
|
|
|
|
/* Stash struct arguments in local variables to prevent switcheroo
|
|
* attacks
|
|
*/
|
|
prio = margs->arg8;
|
|
options = margs->arg9;
|
|
delay = margs->arg10;
|
|
compiler_barrier();
|
|
|
|
/* User threads may only create other user threads and they can't
|
|
* be marked as essential
|
|
*/
|
|
Z_OOPS(Z_SYSCALL_VERIFY(options & K_USER));
|
|
Z_OOPS(Z_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
|
|
|
|
/* Check validity of prio argument; must be the same or worse priority
|
|
* than the caller
|
|
*/
|
|
Z_OOPS(Z_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
|
|
Z_OOPS(Z_SYSCALL_VERIFY(_is_prio_lower_or_equal(prio,
|
|
_current->base.prio)));
|
|
|
|
_setup_new_thread((struct k_thread *)new_thread, stack, stack_size,
|
|
(k_thread_entry_t)entry, (void *)p1,
|
|
(void *)margs->arg6, (void *)margs->arg7, prio,
|
|
options);
|
|
|
|
if (delay != K_FOREVER) {
|
|
schedule_new_thread(new_thread, delay);
|
|
}
|
|
|
|
return new_thread_p;
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
#endif /* CONFIG_MULTITHREADING */
|
|
|
|
int _impl_k_thread_cancel(k_tid_t tid)
|
|
{
|
|
struct k_thread *thread = tid;
|
|
|
|
int key = irq_lock();
|
|
|
|
if (_has_thread_started(thread) ||
|
|
!_is_thread_timeout_active(thread)) {
|
|
irq_unlock(key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
_abort_thread_timeout(thread);
|
|
_thread_monitor_exit(thread);
|
|
|
|
irq_unlock(key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_cancel, K_OBJ_THREAD, struct k_thread *);
|
|
#endif
|
|
|
|
void _k_thread_single_suspend(struct k_thread *thread)
|
|
{
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
}
|
|
|
|
_mark_thread_as_suspended(thread);
|
|
}
|
|
|
|
void _impl_k_thread_suspend(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_suspend(thread);
|
|
|
|
if (thread == _current) {
|
|
_Swap(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_suspend, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
void _k_thread_single_resume(struct k_thread *thread)
|
|
{
|
|
_mark_thread_as_not_suspended(thread);
|
|
_ready_thread(thread);
|
|
}
|
|
|
|
void _impl_k_thread_resume(struct k_thread *thread)
|
|
{
|
|
unsigned int key = irq_lock();
|
|
|
|
_k_thread_single_resume(thread);
|
|
|
|
_reschedule(key);
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_thread_resume, K_OBJ_THREAD, k_tid_t);
|
|
#endif
|
|
|
|
void _k_thread_single_abort(struct k_thread *thread)
|
|
{
|
|
if (thread->fn_abort != NULL) {
|
|
thread->fn_abort();
|
|
}
|
|
|
|
if (_is_thread_ready(thread)) {
|
|
_remove_thread_from_ready_q(thread);
|
|
} else {
|
|
if (_is_thread_pending(thread)) {
|
|
_unpend_thread_no_timeout(thread);
|
|
}
|
|
if (_is_thread_timeout_active(thread)) {
|
|
_abort_thread_timeout(thread);
|
|
}
|
|
}
|
|
|
|
thread->base.thread_state |= _THREAD_DEAD;
|
|
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
|
|
_sys_k_event_logger_thread_exit(thread);
|
|
#endif
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
/* Clear initailized state so that this thread object may be re-used
|
|
* and triggers errors if API calls are made on it from user threads
|
|
*/
|
|
_k_object_uninit(thread->stack_obj);
|
|
_k_object_uninit(thread);
|
|
|
|
/* Revoke permissions on thread's ID so that it may be recycled */
|
|
_thread_perms_all_clear(thread);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MULTITHREADING
|
|
#ifdef CONFIG_USERSPACE
|
|
extern char __object_access_start[];
|
|
extern char __object_access_end[];
|
|
|
|
static void grant_static_access(void)
|
|
{
|
|
struct _k_object_assignment *pos;
|
|
|
|
for (pos = (struct _k_object_assignment *)__object_access_start;
|
|
pos < (struct _k_object_assignment *)__object_access_end;
|
|
pos++) {
|
|
for (int i = 0; pos->objects[i] != NULL; i++) {
|
|
k_object_access_grant(pos->objects[i],
|
|
pos->thread);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_USERSPACE */
|
|
|
|
void _init_static_threads(void)
|
|
{
|
|
unsigned int key;
|
|
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
_setup_new_thread(
|
|
thread_data->init_thread,
|
|
thread_data->init_stack,
|
|
thread_data->init_stack_size,
|
|
thread_data->init_entry,
|
|
thread_data->init_p1,
|
|
thread_data->init_p2,
|
|
thread_data->init_p3,
|
|
thread_data->init_prio,
|
|
thread_data->init_options);
|
|
|
|
thread_data->init_thread->init_data = thread_data;
|
|
}
|
|
|
|
#ifdef CONFIG_USERSPACE
|
|
grant_static_access();
|
|
#endif
|
|
_sched_lock();
|
|
|
|
/*
|
|
* Non-legacy static threads may be started immediately or after a
|
|
* previously specified delay. Even though the scheduler is locked,
|
|
* ticks can still be delivered and processed. Lock interrupts so
|
|
* that the countdown until execution begins from the same tick.
|
|
*
|
|
* Note that static threads defined using the legacy API have a
|
|
* delay of K_FOREVER.
|
|
*/
|
|
key = irq_lock();
|
|
_FOREACH_STATIC_THREAD(thread_data) {
|
|
if (thread_data->init_delay != K_FOREVER) {
|
|
schedule_new_thread(thread_data->init_thread,
|
|
thread_data->init_delay);
|
|
}
|
|
}
|
|
irq_unlock(key);
|
|
k_sched_unlock();
|
|
}
|
|
#endif
|
|
|
|
void _init_thread_base(struct _thread_base *thread_base, int priority,
|
|
u32_t initial_state, unsigned int options)
|
|
{
|
|
/* k_q_node is initialized upon first insertion in a list */
|
|
|
|
thread_base->user_options = (u8_t)options;
|
|
thread_base->thread_state = (u8_t)initial_state;
|
|
|
|
thread_base->prio = priority;
|
|
|
|
thread_base->sched_locked = 0;
|
|
|
|
/* swap_data does not need to be initialized */
|
|
|
|
_init_thread_timeout(thread_base);
|
|
}
|
|
|
|
void k_thread_access_grant(struct k_thread *thread, ...)
|
|
{
|
|
#ifdef CONFIG_USERSPACE
|
|
va_list args;
|
|
va_start(args, thread);
|
|
|
|
while (1) {
|
|
void *object = va_arg(args, void *);
|
|
if (object == NULL) {
|
|
break;
|
|
}
|
|
k_object_access_grant(object, thread);
|
|
}
|
|
va_end(args);
|
|
#else
|
|
ARG_UNUSED(thread);
|
|
#endif
|
|
}
|
|
|
|
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
|
|
void *p1, void *p2, void *p3)
|
|
{
|
|
_current->base.user_options |= K_USER;
|
|
_thread_essential_clear();
|
|
#ifdef CONFIG_THREAD_MONITOR
|
|
_current->entry.pEntry = entry;
|
|
_current->entry.parameter1 = p1;
|
|
_current->entry.parameter2 = p2;
|
|
_current->entry.parameter3 = p3;
|
|
#endif
|
|
#ifdef CONFIG_USERSPACE
|
|
_arch_user_mode_enter(entry, p1, p2, p3);
|
|
#else
|
|
/* XXX In this case we do not reset the stack */
|
|
_thread_entry(entry, p1, p2, p3);
|
|
#endif
|
|
}
|