zephyr/drivers/entropy/entropy_nrf5.c

371 lines
9.2 KiB
C

/*
* Copyright (c) 2018 Nordic Semiconductor ASA
* Copyright (c) 2017 Exati Tecnologia Ltda.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/entropy.h>
#include <sys/atomic.h>
#include <soc.h>
#include <hal/nrf_rng.h>
#define DT_DRV_COMPAT nordic_nrf_rng
#define IRQN DT_INST_IRQN(0)
#define IRQ_PRIO DT_INST_IRQ(0, priority)
/*
* The nRF5 RNG HW has several characteristics that need to be taken
* into account by the driver to achieve energy efficient generation
* of entropy.
*
* The RNG does not support continuously DMA'ing entropy into RAM,
* values must be read out by the CPU byte-by-byte. But once started,
* it will continue to generate bytes until stopped.
*
* The generation time for byte 0 after starting generation (with BIAS
* correction) is:
*
* nRF51822 - 677us
* nRF52810 - 248us
* nRF52840 - 248us
*
* The generation time for byte N >= 1 after starting generation (with
* BIAS correction) is:
*
* nRF51822 - 677us
* nRF52810 - 120us
* nRF52840 - 120us
*
* Due to the first byte in a stream of bytes being more costly on
* some platforms a "water system" inspired algorithm is used to
* amortize the cost of the first byte.
*
* The algorithm will delay generation of entropy until the amount of
* bytes goes below THRESHOLD, at which point it will generate entropy
* until the BUF_LEN limit is reached.
*
* The entropy level is checked at the end of every consumption of
* entropy.
*
* The algorithm and HW together has these characteristics:
*
* Setting a low threshold will highly amortize the extra 120us cost
* of the first byte on nRF52.
*
* Setting a high threshold will minimize the time spent waiting for
* entropy.
*
* To minimize power consumption the threshold should either be set
* low or high depending on the HFCLK-usage pattern of other
* components.
*
* If the threshold is set close to the BUF_LEN, and the system
* happens to anyway be using the HFCLK for several hundred us after
* entropy is requested there will be no extra current-consumption for
* keeping clocks running for entropy generation.
*
*/
struct rng_pool {
uint8_t first_alloc;
uint8_t first_read;
uint8_t last;
uint8_t mask;
uint8_t threshold;
uint8_t buffer[0];
};
#define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)]
BUILD_ASSERT((CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE &
(CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE must be a power of 2!");
BUILD_ASSERT((CONFIG_ENTROPY_NRF5_THR_POOL_SIZE &
(CONFIG_ENTROPY_NRF5_THR_POOL_SIZE - 1)) == 0,
"The CONFIG_ENTROPY_NRF5_THR_POOL_SIZE must be a power of 2!");
struct entropy_nrf5_dev_data {
struct k_sem sem_lock;
struct k_sem sem_sync;
RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE);
RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_NRF5_THR_POOL_SIZE);
};
static struct entropy_nrf5_dev_data entropy_nrf5_data;
#define DEV_DATA(dev) \
((struct entropy_nrf5_dev_data *)(dev)->data)
static int random_byte_get(void)
{
int retval = -EAGAIN;
unsigned int key;
key = irq_lock();
if (nrf_rng_event_check(NRF_RNG, NRF_RNG_EVENT_VALRDY)) {
retval = nrf_rng_random_value_get(NRF_RNG);
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
}
irq_unlock(key);
return retval;
}
#pragma GCC push_options
#if defined(CONFIG_BT_CTLR_FAST_ENC)
#pragma GCC optimize ("Ofast")
#endif
static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf, uint16_t len)
{
uint32_t last = rngp->last;
uint32_t mask = rngp->mask;
uint8_t *dst = buf;
uint32_t first, available;
uint32_t other_read_in_progress;
unsigned int key;
key = irq_lock();
first = rngp->first_alloc;
/*
* The other_read_in_progress is non-zero if rngp->first_read != first,
* which means that lower-priority code (which was interrupted by this
* call) already allocated area for read.
*/
other_read_in_progress = (rngp->first_read ^ first);
available = (last - first) & mask;
if (available < len) {
len = available;
}
/*
* Move alloc index forward to signal, that part of the buffer is
* now reserved for this call.
*/
rngp->first_alloc = (first + len) & mask;
irq_unlock(key);
while (likely(len--)) {
*dst++ = rngp->buffer[first];
first = (first + 1) & mask;
}
/*
* If this call is the last one accessing the pool, move read index
* to signal that all allocated regions are now read and could be
* overwritten.
*/
if (likely(!other_read_in_progress)) {
key = irq_lock();
rngp->first_read = rngp->first_alloc;
irq_unlock(key);
}
len = dst - buf;
available = available - len;
if (available <= rngp->threshold) {
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
}
return len;
}
#pragma GCC pop_options
static int rng_pool_put(struct rng_pool *rngp, uint8_t byte)
{
uint8_t first = rngp->first_read;
uint8_t last = rngp->last;
uint8_t mask = rngp->mask;
/* Signal error if the pool is full. */
if (((last - first) & mask) == mask) {
return -ENOBUFS;
}
rngp->buffer[last] = byte;
rngp->last = (last + 1) & mask;
return 0;
}
static void rng_pool_init(struct rng_pool *rngp, uint16_t size, uint8_t threshold)
{
rngp->first_alloc = 0U;
rngp->first_read = 0U;
rngp->last = 0U;
rngp->mask = size - 1;
rngp->threshold = threshold;
}
static void isr(void *arg)
{
int byte, ret;
ARG_UNUSED(arg);
byte = random_byte_get();
if (byte < 0) {
return;
}
ret = rng_pool_put((struct rng_pool *)(entropy_nrf5_data.isr), byte);
if (ret < 0) {
ret = rng_pool_put((struct rng_pool *)(entropy_nrf5_data.thr),
byte);
if (ret < 0) {
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_STOP);
}
k_sem_give(&entropy_nrf5_data.sem_sync);
}
}
static int entropy_nrf5_get_entropy(struct device *device, uint8_t *buf, uint16_t len)
{
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(device));
while (len) {
uint16_t bytes;
k_sem_take(&entropy_nrf5_data.sem_lock, K_FOREVER);
bytes = rng_pool_get((struct rng_pool *)(entropy_nrf5_data.thr),
buf, len);
k_sem_give(&entropy_nrf5_data.sem_lock);
if (bytes == 0U) {
/* Pool is empty: Sleep until next interrupt. */
k_sem_take(&entropy_nrf5_data.sem_sync, K_FOREVER);
continue;
}
len -= bytes;
buf += bytes;
}
return 0;
}
static int entropy_nrf5_get_entropy_isr(struct device *dev, uint8_t *buf, uint16_t len,
uint32_t flags)
{
uint16_t cnt = len;
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(dev));
if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) {
return rng_pool_get((struct rng_pool *)(entropy_nrf5_data.isr),
buf, len);
}
if (len) {
unsigned int key;
int irq_enabled;
key = irq_lock();
irq_enabled = irq_is_enabled(IRQN);
irq_disable(IRQN);
irq_unlock(key);
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
/* Clear NVIC pending bit. This ensures that a subsequent
* RNG event will set the Cortex-M single-bit event register
* to 1 (the bit is set when NVIC pending IRQ status is
* changed from 0 to 1)
*/
NVIC_ClearPendingIRQ(IRQN);
do {
int byte;
while (!nrf_rng_event_check(NRF_RNG,
NRF_RNG_EVENT_VALRDY)) {
/*
* To guarantee waking up from the event, the
* SEV-On-Pend feature must be enabled (enabled
* during ARCH initialization).
*
* DSB is recommended by spec before WFE (to
* guarantee completion of memory transactions)
*/
__DSB();
__WFE();
__SEV();
__WFE();
}
byte = random_byte_get();
NVIC_ClearPendingIRQ(IRQN);
if (byte < 0) {
continue;
}
buf[--len] = byte;
} while (len);
if (irq_enabled) {
irq_enable(IRQN);
}
}
return cnt;
}
static int entropy_nrf5_init(struct device *device);
static const struct entropy_driver_api entropy_nrf5_api_funcs = {
.get_entropy = entropy_nrf5_get_entropy,
.get_entropy_isr = entropy_nrf5_get_entropy_isr
};
DEVICE_AND_API_INIT(entropy_nrf5, DT_INST_LABEL(0),
entropy_nrf5_init, &entropy_nrf5_data, NULL,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
&entropy_nrf5_api_funcs);
static int entropy_nrf5_init(struct device *device)
{
/* Check if this API is called on correct driver instance. */
__ASSERT_NO_MSG(&entropy_nrf5_data == DEV_DATA(device));
/* Locking semaphore initialized to 1 (unlocked) */
k_sem_init(&entropy_nrf5_data.sem_lock, 1, 1);
/* Synching semaphore */
k_sem_init(&entropy_nrf5_data.sem_sync, 0, 1);
rng_pool_init((struct rng_pool *)(entropy_nrf5_data.thr),
CONFIG_ENTROPY_NRF5_THR_POOL_SIZE,
CONFIG_ENTROPY_NRF5_THR_THRESHOLD);
rng_pool_init((struct rng_pool *)(entropy_nrf5_data.isr),
CONFIG_ENTROPY_NRF5_ISR_POOL_SIZE,
CONFIG_ENTROPY_NRF5_ISR_THRESHOLD);
/* Enable or disable bias correction */
if (IS_ENABLED(CONFIG_ENTROPY_NRF5_BIAS_CORRECTION)) {
nrf_rng_error_correction_enable(NRF_RNG);
} else {
nrf_rng_error_correction_disable(NRF_RNG);
}
nrf_rng_event_clear(NRF_RNG, NRF_RNG_EVENT_VALRDY);
nrf_rng_int_enable(NRF_RNG, NRF_RNG_INT_VALRDY_MASK);
nrf_rng_task_trigger(NRF_RNG, NRF_RNG_TASK_START);
IRQ_CONNECT(IRQN, IRQ_PRIO, isr, &entropy_nrf5_data, 0);
irq_enable(IRQN);
return 0;
}