zephyr/kernel/sched.c

1005 lines
22 KiB
C

/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <ksched.h>
#include <spinlock.h>
#include <sched_priq.h>
#include <wait_q.h>
#include <kswap.h>
#include <kernel_arch_func.h>
#include <syscall_handler.h>
#include <drivers/system_timer.h>
#include <stdbool.h>
#if defined(CONFIG_SCHED_DUMB)
#define _priq_run_add _priq_dumb_add
#define _priq_run_remove _priq_dumb_remove
# if defined(CONFIG_SCHED_CPU_MASK)
# define _priq_run_best _priq_dumb_mask_best
# else
# define _priq_run_best _priq_dumb_best
# endif
#elif defined(CONFIG_SCHED_SCALABLE)
#define _priq_run_add _priq_rb_add
#define _priq_run_remove _priq_rb_remove
#define _priq_run_best _priq_rb_best
#elif defined(CONFIG_SCHED_MULTIQ)
#define _priq_run_add _priq_mq_add
#define _priq_run_remove _priq_mq_remove
#define _priq_run_best _priq_mq_best
#endif
#if defined(CONFIG_WAITQ_SCALABLE)
#define _priq_wait_add _priq_rb_add
#define _priq_wait_remove _priq_rb_remove
#define _priq_wait_best _priq_rb_best
#elif defined(CONFIG_WAITQ_DUMB)
#define _priq_wait_add _priq_dumb_add
#define _priq_wait_remove _priq_dumb_remove
#define _priq_wait_best _priq_dumb_best
#endif
/* the only struct z_kernel instance */
struct z_kernel _kernel;
static struct k_spinlock sched_lock;
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static inline int _is_preempt(struct k_thread *thread)
{
#ifdef CONFIG_PREEMPT_ENABLED
/* explanation in kernel_struct.h */
return thread->base.preempt <= _PREEMPT_THRESHOLD;
#else
return 0;
#endif
}
static inline int is_metairq(struct k_thread *thread)
{
#if CONFIG_NUM_METAIRQ_PRIORITIES > 0
return (thread->base.prio - K_HIGHEST_THREAD_PRIO)
< CONFIG_NUM_METAIRQ_PRIORITIES;
#else
return 0;
#endif
}
#if CONFIG_ASSERT
static inline int _is_thread_dummy(struct k_thread *thread)
{
return !!(thread->base.thread_state & _THREAD_DUMMY);
}
#endif
static inline bool _is_idle(struct k_thread *thread)
{
#ifdef CONFIG_SMP
return thread->base.is_idle;
#else
extern k_tid_t const _idle_thread;
return thread == _idle_thread;
#endif
}
bool _is_t1_higher_prio_than_t2(struct k_thread *t1, struct k_thread *t2)
{
if (t1->base.prio < t2->base.prio) {
return true;
}
#ifdef CONFIG_SCHED_DEADLINE
/* Note that we don't care about wraparound conditions. The
* expectation is that the application will have arranged to
* block the threads, change their priorities or reset their
* deadlines when the job is complete. Letting the deadlines
* go negative is fine and in fact prevents aliasing bugs.
*/
if (t1->base.prio == t2->base.prio) {
int now = (int) k_cycle_get_32();
int dt1 = t1->base.prio_deadline - now;
int dt2 = t2->base.prio_deadline - now;
return dt1 < dt2;
}
#endif
return false;
}
static ALWAYS_INLINE bool should_preempt(struct k_thread *th, int preempt_ok)
{
/* Preemption is OK if it's being explicitly allowed by
* software state (e.g. the thread called k_yield())
*/
if (preempt_ok != 0) {
return true;
}
__ASSERT(_current != NULL, "");
/* Or if we're pended/suspended/dummy (duh) */
if (_is_thread_prevented_from_running(_current)) {
return true;
}
/* Edge case on ARM where a thread can be pended out of an
* interrupt handler before the "synchronous" swap starts
* context switching. Platforms with atomic swap can never
* hit this.
*/
if (IS_ENABLED(CONFIG_SWAP_NONATOMIC)
&& _is_thread_timeout_active(th)) {
return true;
}
/* Otherwise we have to be running a preemptible thread or
* switching to a metairq
*/
if (_is_preempt(_current) || is_metairq(th)) {
return true;
}
/* The idle threads can look "cooperative" if there are no
* preemptible priorities (this is sort of an API glitch).
* They must always be preemptible.
*/
if (!IS_ENABLED(CONFIG_PREEMPT_ENABLED) && _is_idle(_current)) {
return true;
}
return false;
}
#ifdef CONFIG_SCHED_CPU_MASK
static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq)
{
/* With masks enabled we need to be prepared to walk the list
* looking for one we can run
*/
struct k_thread *t;
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if ((t->base.cpu_mask & BIT(_current_cpu->id)) != 0) {
return t;
}
}
return NULL;
}
#endif
static ALWAYS_INLINE struct k_thread *next_up(void)
{
#ifndef CONFIG_SMP
/* In uniprocessor mode, we can leave the current thread in
* the queue (actually we have to, otherwise the assembly
* context switch code for all architectures would be
* responsible for putting it back in _Swap and ISR return!),
* which makes this choice simple.
*/
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
return th ? th : _current_cpu->idle_thread;
#else
/* Under SMP, the "cache" mechanism for selecting the next
* thread doesn't work, so we have more work to do to test
* _current against the best choice from the queue.
*
* Subtle note on "queued": in SMP mode, _current does not
* live in the queue, so this isn't exactly the same thing as
* "ready", it means "is _current already added back to the
* queue such that we don't want to re-add it".
*/
int queued = _is_thread_queued(_current);
int active = !_is_thread_prevented_from_running(_current);
/* Choose the best thread that is not current */
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
if (th == NULL) {
th = _current_cpu->idle_thread;
}
if (active) {
if (!queued &&
!_is_t1_higher_prio_than_t2(th, _current)) {
th = _current;
}
if (!should_preempt(th, _current_cpu->swap_ok)) {
th = _current;
}
}
/* Put _current back into the queue */
if (th != _current && active && !_is_idle(_current) && !queued) {
_priq_run_add(&_kernel.ready_q.runq, _current);
_mark_thread_as_queued(_current);
}
/* Take the new _current out of the queue */
if (_is_thread_queued(th)) {
_priq_run_remove(&_kernel.ready_q.runq, th);
}
_mark_thread_as_not_queued(th);
return th;
#endif
}
#ifdef CONFIG_TIMESLICING
static int slice_time;
static int slice_max_prio;
#ifdef CONFIG_SWAP_NONATOMIC
/* If _Swap() isn't atomic, then it's possible for a timer interrupt
* to try to timeslice away _current after it has already pended
* itself but before the corresponding context switch. Treat that as
* a noop condition in z_time_slice().
*/
static struct k_thread *pending_current;
#endif
static void reset_time_slice(void)
{
/* Add the elapsed time since the last announced tick to the
* slice count, as we'll see those "expired" ticks arrive in a
* FUTURE z_time_slice() call.
*/
_current_cpu->slice_ticks = slice_time + z_clock_elapsed();
z_set_timeout_expiry(slice_time, false);
}
void k_sched_time_slice_set(s32_t slice, int prio)
{
LOCKED(&sched_lock) {
_current_cpu->slice_ticks = 0;
slice_time = _ms_to_ticks(slice);
slice_max_prio = prio;
reset_time_slice();
}
}
static inline int sliceable(struct k_thread *t)
{
return _is_preempt(t)
&& !_is_prio_higher(t->base.prio, slice_max_prio)
&& !_is_idle(t)
&& !_is_thread_timeout_active(t);
}
/* Called out of each timer interrupt */
void z_time_slice(int ticks)
{
#ifdef CONFIG_SWAP_NONATOMIC
if (pending_current == _current) {
pending_current = NULL;
reset_time_slice();
return;
}
pending_current = NULL;
#endif
if (slice_time && sliceable(_current)) {
if (ticks >= _current_cpu->slice_ticks) {
_move_thread_to_end_of_prio_q(_current);
reset_time_slice();
} else {
_current_cpu->slice_ticks -= ticks;
}
}
}
#else
static void reset_time_slice(void) { /* !CONFIG_TIMESLICING */ }
#endif
static void update_cache(int preempt_ok)
{
#ifndef CONFIG_SMP
struct k_thread *th = next_up();
if (should_preempt(th, preempt_ok)) {
if (th != _current) {
reset_time_slice();
}
_kernel.ready_q.cache = th;
} else {
_kernel.ready_q.cache = _current;
}
#else
/* The way this works is that the CPU record keeps its
* "cooperative swapping is OK" flag until the next reschedule
* call or context switch. It doesn't need to be tracked per
* thread because if the thread gets preempted for whatever
* reason the scheduler will make the same decision anyway.
*/
_current_cpu->swap_ok = preempt_ok;
#endif
}
void _add_thread_to_ready_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_run_add(&_kernel.ready_q.runq, thread);
_mark_thread_as_queued(thread);
update_cache(0);
}
}
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
_priq_run_add(&_kernel.ready_q.runq, thread);
_mark_thread_as_queued(thread);
update_cache(thread == _current);
}
}
void _remove_thread_from_ready_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
if (_is_thread_queued(thread)) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
_mark_thread_as_not_queued(thread);
update_cache(thread == _current);
}
}
}
static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
_remove_thread_from_ready_q(thread);
_mark_thread_as_pending(thread);
if (wait_q != NULL) {
thread->base.pended_on = wait_q;
_priq_wait_add(&wait_q->waitq, thread);
}
if (timeout != K_FOREVER) {
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
_add_thread_timeout(thread, ticks);
}
sys_trace_thread_pend(thread);
}
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
__ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread));
pend(thread, wait_q, timeout);
}
static _wait_q_t *pended_on(struct k_thread *thread)
{
__ASSERT_NO_MSG(thread->base.pended_on);
return thread->base.pended_on;
}
ALWAYS_INLINE struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
struct k_thread *from)
{
ARG_UNUSED(from);
struct k_thread *ret = NULL;
LOCKED(&sched_lock) {
ret = _priq_wait_best(&wait_q->waitq);
}
return ret;
}
ALWAYS_INLINE void _unpend_thread_no_timeout(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_wait_remove(&pended_on(thread)->waitq, thread);
_mark_thread_as_not_pending(thread);
}
thread->base.pended_on = NULL;
}
#ifdef CONFIG_SYS_CLOCK_EXISTS
/* Timeout handler for *_thread_timeout() APIs */
void z_thread_timeout(struct _timeout *to)
{
struct k_thread *th = CONTAINER_OF(to, struct k_thread, base.timeout);
if (th->base.pended_on != NULL) {
_unpend_thread_no_timeout(th);
}
_mark_thread_as_started(th);
_ready_thread(th);
}
#endif
int _pend_curr_irqlock(u32_t key, _wait_q_t *wait_q, s32_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
pend(_current, wait_q, timeout);
return _Swap_irqlock(key);
}
int _pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
_wait_q_t *wait_q, s32_t timeout)
{
#if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC)
pending_current = _current;
#endif
pend(_current, wait_q, timeout);
return _Swap(lock, key);
}
struct k_thread *_unpend_first_thread(_wait_q_t *wait_q)
{
struct k_thread *t = _unpend1_no_timeout(wait_q);
if (t != NULL) {
(void)_abort_thread_timeout(t);
}
return t;
}
void _unpend_thread(struct k_thread *thread)
{
_unpend_thread_no_timeout(thread);
(void)_abort_thread_timeout(thread);
}
/* FIXME: this API is glitchy when used in SMP. If the thread is
* currently scheduled on the other CPU, it will silently set it's
* priority but nothing will cause a reschedule until the next
* interrupt. An audit seems to show that all current usage is to set
* priorities on either _current or a pended thread, though, so it's
* fine for now.
*/
void _thread_priority_set(struct k_thread *thread, int prio)
{
bool need_sched = 0;
LOCKED(&sched_lock) {
need_sched = _is_thread_ready(thread);
if (need_sched) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
thread->base.prio = prio;
_priq_run_add(&_kernel.ready_q.runq, thread);
update_cache(1);
} else {
thread->base.prio = prio;
}
}
sys_trace_thread_priority_set(thread);
if (need_sched && _current->base.sched_locked == 0) {
_reschedule_unlocked();
}
}
static inline int resched(void)
{
#ifdef CONFIG_SMP
if (!_current_cpu->swap_ok) {
return 0;
}
_current_cpu->swap_ok = 0;
#endif
return !_is_in_isr();
}
void _reschedule(struct k_spinlock *lock, k_spinlock_key_t key)
{
if (resched()) {
_Swap(lock, key);
} else {
k_spin_unlock(lock, key);
}
}
void _reschedule_irqlock(u32_t key)
{
if (resched()) {
_Swap_irqlock(key);
} else {
irq_unlock(key);
}
}
void k_sched_lock(void)
{
LOCKED(&sched_lock) {
_sched_lock();
}
}
void k_sched_unlock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(_current->base.sched_locked != 0, "");
__ASSERT(!_is_in_isr(), "");
LOCKED(&sched_lock) {
++_current->base.sched_locked;
update_cache(1);
}
K_DEBUG("scheduler unlocked (%p:%d)\n",
_current, _current->base.sched_locked);
_reschedule_unlocked();
#endif
}
#ifdef CONFIG_SMP
struct k_thread *_get_next_ready_thread(void)
{
struct k_thread *ret = 0;
LOCKED(&sched_lock) {
ret = next_up();
}
return ret;
}
#endif
#ifdef CONFIG_USE_SWITCH
void *_get_next_switch_handle(void *interrupted)
{
_current->switch_handle = interrupted;
#ifdef CONFIG_SMP
LOCKED(&sched_lock) {
struct k_thread *th = next_up();
if (_current != th) {
reset_time_slice();
_current_cpu->swap_ok = 0;
#ifdef CONFIG_TRACING
sys_trace_thread_switched_out();
#endif
_current = th;
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
}
}
#else
#ifdef CONFIG_TRACING
sys_trace_thread_switched_out();
#endif
_current = _get_next_ready_thread();
#ifdef CONFIG_TRACING
sys_trace_thread_switched_in();
#endif
#endif
_check_stack_sentinel();
return _current->switch_handle;
}
#endif
ALWAYS_INLINE void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!_is_idle(thread));
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if (_is_t1_higher_prio_than_t2(thread, t)) {
sys_dlist_insert(&t->base.qnode_dlist,
&thread->base.qnode_dlist);
return;
}
}
sys_dlist_append(pq, &thread->base.qnode_dlist);
}
void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!_is_idle(thread));
sys_dlist_remove(&thread->base.qnode_dlist);
}
struct k_thread *_priq_dumb_best(sys_dlist_t *pq)
{
struct k_thread *t = NULL;
sys_dnode_t *n = sys_dlist_peek_head(pq);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return t;
}
bool _priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
{
struct k_thread *ta, *tb;
ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
if (_is_t1_higher_prio_than_t2(ta, tb)) {
return true;
} else if (_is_t1_higher_prio_than_t2(tb, ta)) {
return false;
} else {
return ta->base.order_key < tb->base.order_key ? 1 : 0;
}
}
void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!_is_idle(thread));
thread->base.order_key = pq->next_order_key++;
/* Renumber at wraparound. This is tiny code, and in practice
* will almost never be hit on real systems. BUT on very
* long-running systems where a priq never completely empties
* AND that contains very large numbers of threads, it can be
* a latency glitch to loop over all the threads like this.
*/
if (!pq->next_order_key) {
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
t->base.order_key = pq->next_order_key++;
}
}
rb_insert(&pq->tree, &thread->base.qnode_rb);
}
void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!_is_idle(thread));
rb_remove(&pq->tree, &thread->base.qnode_rb);
if (!pq->tree.root) {
pq->next_order_key = 0;
}
}
struct k_thread *_priq_rb_best(struct _priq_rb *pq)
{
struct k_thread *t = NULL;
struct rbnode *n = rb_get_min(&pq->tree);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_rb);
}
return t;
}
#ifdef CONFIG_SCHED_MULTIQ
# if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31
# error Too many priorities for multiqueue scheduler (max 32)
# endif
#endif
ALWAYS_INLINE void _priq_mq_add(struct _priq_mq *pq, struct k_thread *thread)
{
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist);
pq->bitmask |= (1 << priority_bit);
}
ALWAYS_INLINE void _priq_mq_remove(struct _priq_mq *pq, struct k_thread *thread)
{
int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO;
sys_dlist_remove(&thread->base.qnode_dlist);
if (sys_dlist_is_empty(&pq->queues[priority_bit])) {
pq->bitmask &= ~(1 << priority_bit);
}
}
struct k_thread *_priq_mq_best(struct _priq_mq *pq)
{
if (!pq->bitmask) {
return NULL;
}
struct k_thread *t = NULL;
sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)];
sys_dnode_t *n = sys_dlist_peek_head(l);
if (n != NULL) {
t = CONTAINER_OF(n, struct k_thread, base.qnode_dlist);
}
return t;
}
int _unpend_all(_wait_q_t *wait_q)
{
int need_sched = 0;
struct k_thread *th;
while ((th = _waitq_head(wait_q)) != NULL) {
_unpend_thread(th);
_ready_thread(th);
need_sched = 1;
}
return need_sched;
}
void _sched_init(void)
{
#ifdef CONFIG_SCHED_DUMB
sys_dlist_init(&_kernel.ready_q.runq);
#endif
#ifdef CONFIG_SCHED_SCALABLE
_kernel.ready_q.runq = (struct _priq_rb) {
.tree = {
.lessthan_fn = _priq_rb_lessthan,
}
};
#endif
#ifdef CONFIG_SCHED_MULTIQ
for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) {
sys_dlist_init(&_kernel.ready_q.runq.queues[i]);
}
#endif
#ifdef CONFIG_TIMESLICING
k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE,
CONFIG_TIMESLICE_PRIORITY);
#endif
}
int _impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
struct k_thread *);
#endif
void _impl_k_thread_priority_set(k_tid_t tid, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!_is_in_isr(), "");
struct k_thread *thread = (struct k_thread *)tid;
_thread_priority_set(thread, prio);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
{
struct k_thread *thread = (struct k_thread *)thread_p;
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
"invalid thread priority %d", (int)prio));
Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio));
_impl_k_thread_priority_set((k_tid_t)thread, prio);
return 0;
}
#endif
#ifdef CONFIG_SCHED_DEADLINE
void _impl_k_thread_deadline_set(k_tid_t tid, int deadline)
{
struct k_thread *th = tid;
LOCKED(&sched_lock) {
th->base.prio_deadline = k_cycle_get_32() + deadline;
if (_is_thread_queued(th)) {
_priq_run_remove(&_kernel.ready_q.runq, th);
_priq_run_add(&_kernel.ready_q.runq, th);
}
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_deadline_set, thread_p, deadline)
{
struct k_thread *thread = (struct k_thread *)thread_p;
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0,
"invalid thread deadline %d",
(int)deadline));
_impl_k_thread_deadline_set((k_tid_t)thread, deadline);
return 0;
}
#endif
#endif
void _impl_k_yield(void)
{
__ASSERT(!_is_in_isr(), "");
if (!_is_idle(_current)) {
LOCKED(&sched_lock) {
_priq_run_remove(&_kernel.ready_q.runq, _current);
_priq_run_add(&_kernel.ready_q.runq, _current);
update_cache(1);
}
}
_Swap_unlocked();
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
#endif
s32_t _impl_k_sleep(s32_t duration)
{
#ifdef CONFIG_MULTITHREADING
u32_t expected_wakeup_time;
s32_t ticks;
__ASSERT(!_is_in_isr(), "");
__ASSERT(duration != K_FOREVER, "");
K_DEBUG("thread %p for %d ns\n", _current, duration);
/* wait of 0 ms is treated as a 'yield' */
if (duration == 0) {
k_yield();
return 0;
}
ticks = _TICK_ALIGN + _ms_to_ticks(duration);
expected_wakeup_time = ticks + z_tick_get_32();
/* Spinlock purely for local interrupt locking to prevent us
* from being interrupted while _current is in an intermediate
* state. Should unify this implementation with pend().
*/
struct k_spinlock local_lock = {};
k_spinlock_key_t key = k_spin_lock(&local_lock);
_remove_thread_from_ready_q(_current);
_add_thread_timeout(_current, ticks);
(void)_Swap(&local_lock, key);
ticks = expected_wakeup_time - z_tick_get_32();
if (ticks > 0) {
return __ticks_to_ms(ticks);
}
#endif
return 0;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_sleep, duration)
{
/* FIXME there were some discussions recently on whether we should
* relax this, thread would be unscheduled until k_wakeup issued
*/
Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
"sleeping forever not allowed"));
return _impl_k_sleep(duration);
}
#endif
void _impl_k_wakeup(k_tid_t thread)
{
if (_is_thread_pending(thread)) {
return;
}
if (_abort_thread_timeout(thread) < 0) {
return;
}
_ready_thread(thread);
if (!_is_in_isr()) {
_reschedule_unlocked();
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
#endif
k_tid_t _impl_k_current_get(void)
{
return _current;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_current_get);
#endif
int _impl_k_is_preempt_thread(void)
{
return !_is_in_isr() && _is_preempt(_current);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
#endif
#ifdef CONFIG_SCHED_CPU_MASK
# ifdef CONFIG_SMP
/* Right now we use a single byte for this mask */
BUILD_ASSERT_MSG(CONFIG_MP_NUM_CPUS <= 8, "Too many CPUs for mask word");
# endif
static int cpu_mask_mod(k_tid_t t, u32_t enable_mask, u32_t disable_mask)
{
int ret = 0;
LOCKED(&sched_lock) {
if (_is_thread_prevented_from_running(t)) {
t->base.cpu_mask |= enable_mask;
t->base.cpu_mask &= ~disable_mask;
} else {
ret = -EINVAL;
}
}
return ret;
}
int k_thread_cpu_mask_clear(k_tid_t thread)
{
return cpu_mask_mod(thread, 0, 0xffffffff);
}
int k_thread_cpu_mask_enable_all(k_tid_t thread)
{
return cpu_mask_mod(thread, 0xffffffff, 0);
}
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
{
return cpu_mask_mod(thread, BIT(cpu), 0);
}
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
{
return cpu_mask_mod(thread, 0, BIT(cpu));
}
#endif /* CONFIG_SCHED_CPU_MASK */