496 lines
14 KiB
C
496 lines
14 KiB
C
/* nanokernel dynamic-size FIFO queue object */
|
|
|
|
/*
|
|
* Copyright (c) 2010-2015 Wind River Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1) Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2) Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3) Neither the name of Wind River Systems nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
DESCRIPTION
|
|
This module provides the nanokernel FIFO object implementation, including
|
|
the following APIs:
|
|
|
|
nano_fifo_init
|
|
nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put
|
|
nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get
|
|
nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
|
|
|
|
|
|
INTERNAL
|
|
In some cases the compiler "alias" attribute is used to map two or more
|
|
APIs to the same function, since they have identical implementations.
|
|
*/
|
|
|
|
#include <nano_private.h>
|
|
#include <toolchain.h>
|
|
#include <sections.h>
|
|
#include <wait_q.h>
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_fifo_init - initialize a nanokernel multiple-waiter fifo (fifo) object
|
|
*
|
|
* This function initializes a nanokernel multiple-waiter fifo (fifo) object
|
|
* structure.
|
|
*
|
|
* It may be called from either a fiber or task context.
|
|
*
|
|
* RETURNS: N/A
|
|
*
|
|
* INTERNAL
|
|
* Although the existing implementation will support invocation from an ISR
|
|
* context, for future flexibility, this API will be restricted from ISR
|
|
* level invocation.
|
|
*/
|
|
|
|
void nano_fifo_init(
|
|
struct nano_fifo *fifo /* fifo to initialize */
|
|
)
|
|
{
|
|
/*
|
|
* The wait queue and data queue occupy the same space since there cannot
|
|
* be both queued data and pending fibers in the FIFO. Care must be taken
|
|
* that, when one of the queues becomes empty, it is reset to a state
|
|
* that reflects an empty queue to both the data and wait queues.
|
|
*/
|
|
_nano_wait_q_init(&fifo->wait_q);
|
|
|
|
/*
|
|
* If the 'stat' field is a positive value, it indicates how many data
|
|
* elements reside in the FIFO. If the 'stat' field is a negative value,
|
|
* its absolute value indicates how many fibers are pending on the LIFO
|
|
* object. Thus a value of '0' indicates that there are no data elements
|
|
* in the LIFO _and_ there are no pending fibers.
|
|
*/
|
|
|
|
fifo->stat = 0;
|
|
}
|
|
|
|
FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void);
|
|
FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void);
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* enqueue_data - internal routine to append data to a fifo
|
|
*
|
|
* RETURNS: N/A
|
|
*/
|
|
|
|
static inline void enqueue_data(struct nano_fifo *fifo, void *data)
|
|
{
|
|
*(void **)fifo->data_q.tail = data;
|
|
fifo->data_q.tail = data;
|
|
*(int *)data = 0;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* _fifo_put_non_preemptible - append an element to a fifo (no context switch)
|
|
*
|
|
* This routine adds an element to the end of a fifo object; it may be called
|
|
* from either either a fiber or an ISR context. A fiber pending on the fifo
|
|
* object will be made ready, but will NOT be scheduled to execute.
|
|
*
|
|
* If a fiber is waiting on the fifo, the address of the element is returned to
|
|
* the waiting fiber. Otherwise, the element is linked to the end of the list.
|
|
*
|
|
* RETURNS: N/A
|
|
*
|
|
* INTERNAL
|
|
* This function is capable of supporting invocations from both a fiber and an
|
|
* ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases
|
|
* are created to support any required implementation differences in the future
|
|
* without introducing a source code migration issue.
|
|
*/
|
|
|
|
void _fifo_put_non_preemptible(
|
|
struct nano_fifo *fifo, /* fifo on which to interact */
|
|
void *data /* data to send */
|
|
)
|
|
{
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock_inline();
|
|
|
|
fifo->stat++;
|
|
if (fifo->stat <= 0) {
|
|
tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q);
|
|
_nano_timeout_abort(ccs);
|
|
fiberRtnValueSet(ccs, (unsigned int)data);
|
|
} else {
|
|
enqueue_data(fifo, data);
|
|
}
|
|
|
|
irq_unlock_inline(imask);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_task_fifo_put - add an element to the end of a fifo
|
|
*
|
|
* This routine adds an element to the end of a fifo object; it can be called
|
|
* from only a task context. A fiber pending on the fifo object will be made
|
|
* ready, and will preempt the running task immediately.
|
|
*
|
|
* If a fiber is waiting on the fifo, the address of the element is returned to
|
|
* the waiting fiber. Otherwise, the element is linked to the end of the list.
|
|
*
|
|
* RETURNS: N/A
|
|
*/
|
|
|
|
void nano_task_fifo_put(
|
|
struct nano_fifo *fifo, /* fifo on which to interact */
|
|
void *data /* data to send */
|
|
)
|
|
{
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock_inline();
|
|
|
|
fifo->stat++;
|
|
if (fifo->stat <= 0) {
|
|
tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q);
|
|
_nano_timeout_abort(ccs);
|
|
fiberRtnValueSet(ccs, (unsigned int)data);
|
|
_Swap(imask);
|
|
return;
|
|
} else {
|
|
enqueue_data(fifo, data);
|
|
}
|
|
|
|
irq_unlock_inline(imask);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_fifo_put - add an element to the end of a fifo
|
|
*
|
|
* This is a convenience wrapper for the context-specific APIs. This is
|
|
* helpful whenever the exact scheduling context is not known, but should
|
|
* be avoided when the context is known up-front (to avoid unnecessary
|
|
* overhead).
|
|
*/
|
|
void nano_fifo_put(struct nano_fifo *fifo, void *data)
|
|
{
|
|
static void (*func[3])(struct nano_fifo *fifo, void *data) = {
|
|
nano_isr_fifo_put, nano_fiber_fifo_put, nano_task_fifo_put
|
|
};
|
|
func[context_type_get()](fifo, data);
|
|
}
|
|
|
|
FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_task_fifo_get, void *);
|
|
FUNC_ALIAS(_fifo_get, nano_fifo_get, void *);
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* dequeue_data - internal routine to remove data from a fifo
|
|
*
|
|
* RETURNS: the data item removed
|
|
*/
|
|
|
|
static inline void *dequeue_data(struct nano_fifo *fifo)
|
|
{
|
|
void *data = fifo->data_q.head;
|
|
|
|
if (fifo->stat == 0) {
|
|
/*
|
|
* The data_q and wait_q occupy the same space and have the same
|
|
* format, and there is already an API for resetting the wait_q, so
|
|
* use it.
|
|
*/
|
|
_nano_wait_q_reset(&fifo->wait_q);
|
|
} else {
|
|
fifo->data_q.head = *(void **)data;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* _fifo_get - get an element from the head a fifo
|
|
*
|
|
* Remove the head element from the specified nanokernel multiple-waiter fifo
|
|
* linked list fifo; it may be called from a fiber, task, or ISR context.
|
|
*
|
|
* If no elements are available, NULL is returned. The first word in the
|
|
* element contains invalid data because that memory location was used to store
|
|
* a pointer to the next element in the linked list.
|
|
*
|
|
* RETURNS: Pointer to head element in the list if available, otherwise NULL
|
|
*
|
|
* INTERNAL
|
|
* This function is capable of supporting invocations from fiber, task, and ISR
|
|
* contexts. However, the nano_isr_fifo_get, nano_task_fifo_get, and
|
|
* nano_fiber_fifo_get aliases are created to support any required
|
|
* implementation differences in the future without introducing a source code
|
|
* migration issue.
|
|
*/
|
|
|
|
void *_fifo_get(
|
|
struct nano_fifo *fifo /* fifo on which to interact */
|
|
)
|
|
{
|
|
void *data = NULL;
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock_inline();
|
|
|
|
if (fifo->stat > 0) {
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
}
|
|
irq_unlock_inline(imask);
|
|
return data;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_fiber_fifo_get_wait - get the head element of a fifo, wait if emtpy
|
|
*
|
|
* Remove the head element from the specified system-level multiple-waiter
|
|
* fifo; it can only be called from a fiber context.
|
|
*
|
|
* If no elements are available, the calling fiber will pend until an element
|
|
* is put onto the fifo.
|
|
*
|
|
* The first word in the element contains invalid data because that memory
|
|
* location was used to store a pointer to the next element in the linked list.
|
|
*
|
|
* RETURNS: Pointer to head element in the list
|
|
*
|
|
* INTERNAL There exists a separate nano_task_fifo_get_wait() implementation
|
|
* since a task context cannot pend on a nanokernel object. Instead tasks will
|
|
* poll the fifo object.
|
|
*/
|
|
|
|
void *nano_fiber_fifo_get_wait(
|
|
struct nano_fifo *fifo /* fifo on which to interact */
|
|
)
|
|
{
|
|
void *data;
|
|
unsigned int imask;
|
|
|
|
imask = irq_lock_inline();
|
|
|
|
fifo->stat--;
|
|
if (fifo->stat < 0) {
|
|
_nano_wait_q_put(&fifo->wait_q);
|
|
data = (void *)_Swap(imask);
|
|
} else {
|
|
data = dequeue_data(fifo);
|
|
irq_unlock_inline(imask);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_task_fifo_get_wait - get the head element of a fifo, poll if empty
|
|
*
|
|
* Remove the head element from the specified system-level multiple-waiter
|
|
* fifo; it can only be called from a task context.
|
|
*
|
|
* If no elements are available, the calling task will poll until an
|
|
* until an element is put onto the fifo.
|
|
*
|
|
* The first word in the element contains invalid data because that memory
|
|
* location was used to store a pointer to the next element in the linked list.
|
|
*
|
|
* RETURNS: Pointer to head element in the list
|
|
*/
|
|
|
|
void *nano_task_fifo_get_wait(
|
|
struct nano_fifo *fifo /* fifo on which to interact */
|
|
)
|
|
{
|
|
void *data;
|
|
unsigned int imask;
|
|
|
|
/* spin until data is put onto the FIFO */
|
|
|
|
while (1) {
|
|
imask = irq_lock_inline();
|
|
|
|
/*
|
|
* Predict that the branch will be taken to break out of the loop.
|
|
* There is little cost to a misprediction since that leads to idle.
|
|
*/
|
|
|
|
if (likely(fifo->stat > 0))
|
|
break;
|
|
|
|
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
|
|
|
|
nano_cpu_atomic_idle(imask);
|
|
}
|
|
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
irq_unlock_inline(imask);
|
|
|
|
return data;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
*
|
|
* nano_fifo_get_wait - get the head element of a fifo, poll/pend if empty
|
|
*
|
|
* This is a convenience wrapper for the context-specific APIs. This is
|
|
* helpful whenever the exact scheduling context is not known, but should
|
|
* be avoided when the context is known up-front (to avoid unnecessary
|
|
* overhead).
|
|
*
|
|
* It's only valid to call this API from a fiber or a task.
|
|
*/
|
|
void *nano_fifo_get_wait(struct nano_fifo *fifo)
|
|
{
|
|
static void *(*func[3])(struct nano_fifo *fifo) = {
|
|
NULL, nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
|
|
};
|
|
return func[context_type_get()](fifo);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_NANO_TIMEOUTS
|
|
/*!
|
|
* @brief get the head element of a fifo, pend with a timeout if empty
|
|
*
|
|
* Remove the head element from the specified nanokernel fifo; it can only be
|
|
* called from a task context.
|
|
*
|
|
* If no elements are available, the calling task will pend until an element
|
|
* is put onto the fifo, or the timeout expires, whichever comes first.
|
|
*
|
|
* The first word in the element contains invalid data because that memory
|
|
* location was used to store a pointer to the next element in the linked
|
|
* list.
|
|
*
|
|
* @param fifo the FIFO on which to operate
|
|
* @param timeout_in_ticks time to wait in ticks
|
|
*
|
|
* return Pointer to head element in the list, NULL if timed out
|
|
*/
|
|
|
|
void *nano_fiber_fifo_get_wait_timeout(struct nano_fifo *fifo,
|
|
int32_t timeout_in_ticks)
|
|
{
|
|
unsigned int key;
|
|
void *data;
|
|
|
|
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
|
|
return nano_fiber_fifo_get_wait(fifo);
|
|
}
|
|
|
|
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
|
|
return nano_fiber_fifo_get(fifo);
|
|
}
|
|
|
|
key = irq_lock_inline();
|
|
|
|
fifo->stat--;
|
|
if (fifo->stat < 0) {
|
|
_nano_timeout_add(_nanokernel.current, &fifo->wait_q, timeout_in_ticks);
|
|
_nano_wait_q_put(&fifo->wait_q);
|
|
data = (void *)_Swap(key);
|
|
} else {
|
|
data = dequeue_data(fifo);
|
|
irq_unlock_inline(key);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/*!
|
|
* @brief get the head element of a fifo, poll with a timeout if empty
|
|
*
|
|
* Remove the head element from the specified nanokernel fifo; it can only be
|
|
* called from a task context.
|
|
*
|
|
* If no elements are available, the calling task will poll until an element
|
|
* is put onto the fifo, or the timeout expires, whichever comes first.
|
|
*
|
|
* The first word in the element contains invalid data because that memory
|
|
* location was used to store a pointer to the next element in the linked
|
|
* list.
|
|
*
|
|
* @param fifo the FIFO on which to operate
|
|
* @param timeout_in_ticks time to wait in ticks
|
|
*
|
|
* return Pointer to head element in the list, NULL if timed out
|
|
*/
|
|
|
|
void *nano_task_fifo_get_wait_timeout(struct nano_fifo *fifo,
|
|
int32_t timeout_in_ticks)
|
|
{
|
|
int64_t cur_ticks, limit;
|
|
unsigned int key;
|
|
void *data;
|
|
|
|
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
|
|
return nano_task_fifo_get_wait(fifo);
|
|
}
|
|
|
|
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
|
|
return nano_task_fifo_get(fifo);
|
|
}
|
|
|
|
key = irq_lock_inline();
|
|
cur_ticks = nano_tick_get();
|
|
limit = cur_ticks + timeout_in_ticks;
|
|
|
|
while (cur_ticks < limit) {
|
|
|
|
/*
|
|
* Predict that the branch will be taken to break out of the loop.
|
|
* There is little cost to a misprediction since that leads to idle.
|
|
*/
|
|
|
|
if (likely(fifo->stat > 0)) {
|
|
fifo->stat--;
|
|
data = dequeue_data(fifo);
|
|
irq_unlock_inline(key);
|
|
return data;
|
|
}
|
|
|
|
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
|
|
|
|
nano_cpu_atomic_idle(key);
|
|
|
|
key = irq_lock_inline();
|
|
cur_ticks = nano_tick_get();
|
|
}
|
|
|
|
irq_unlock_inline(key);
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_NANO_TIMEOUTS */
|