zephyr/kernel/nanokernel/nano_fifo.c

496 lines
14 KiB
C

/* nanokernel dynamic-size FIFO queue object */
/*
* Copyright (c) 2010-2015 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
This module provides the nanokernel FIFO object implementation, including
the following APIs:
nano_fifo_init
nano_fiber_fifo_put, nano_task_fifo_put, nano_isr_fifo_put
nano_fiber_fifo_get, nano_task_fifo_get, nano_isr_fifo_get
nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
INTERNAL
In some cases the compiler "alias" attribute is used to map two or more
APIs to the same function, since they have identical implementations.
*/
#include <nano_private.h>
#include <toolchain.h>
#include <sections.h>
#include <wait_q.h>
/*******************************************************************************
*
* nano_fifo_init - initialize a nanokernel multiple-waiter fifo (fifo) object
*
* This function initializes a nanokernel multiple-waiter fifo (fifo) object
* structure.
*
* It may be called from either a fiber or task context.
*
* RETURNS: N/A
*
* INTERNAL
* Although the existing implementation will support invocation from an ISR
* context, for future flexibility, this API will be restricted from ISR
* level invocation.
*/
void nano_fifo_init(
struct nano_fifo *fifo /* fifo to initialize */
)
{
/*
* The wait queue and data queue occupy the same space since there cannot
* be both queued data and pending fibers in the FIFO. Care must be taken
* that, when one of the queues becomes empty, it is reset to a state
* that reflects an empty queue to both the data and wait queues.
*/
_nano_wait_q_init(&fifo->wait_q);
/*
* If the 'stat' field is a positive value, it indicates how many data
* elements reside in the FIFO. If the 'stat' field is a negative value,
* its absolute value indicates how many fibers are pending on the LIFO
* object. Thus a value of '0' indicates that there are no data elements
* in the LIFO _and_ there are no pending fibers.
*/
fifo->stat = 0;
}
FUNC_ALIAS(_fifo_put_non_preemptible, nano_isr_fifo_put, void);
FUNC_ALIAS(_fifo_put_non_preemptible, nano_fiber_fifo_put, void);
/*******************************************************************************
*
* enqueue_data - internal routine to append data to a fifo
*
* RETURNS: N/A
*/
static inline void enqueue_data(struct nano_fifo *fifo, void *data)
{
*(void **)fifo->data_q.tail = data;
fifo->data_q.tail = data;
*(int *)data = 0;
}
/*******************************************************************************
*
* _fifo_put_non_preemptible - append an element to a fifo (no context switch)
*
* This routine adds an element to the end of a fifo object; it may be called
* from either either a fiber or an ISR context. A fiber pending on the fifo
* object will be made ready, but will NOT be scheduled to execute.
*
* If a fiber is waiting on the fifo, the address of the element is returned to
* the waiting fiber. Otherwise, the element is linked to the end of the list.
*
* RETURNS: N/A
*
* INTERNAL
* This function is capable of supporting invocations from both a fiber and an
* ISR context. However, the nano_isr_fifo_put and nano_fiber_fifo_put aliases
* are created to support any required implementation differences in the future
* without introducing a source code migration issue.
*/
void _fifo_put_non_preemptible(
struct nano_fifo *fifo, /* fifo on which to interact */
void *data /* data to send */
)
{
unsigned int imask;
imask = irq_lock_inline();
fifo->stat++;
if (fifo->stat <= 0) {
tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q);
_nano_timeout_abort(ccs);
fiberRtnValueSet(ccs, (unsigned int)data);
} else {
enqueue_data(fifo, data);
}
irq_unlock_inline(imask);
}
/*******************************************************************************
*
* nano_task_fifo_put - add an element to the end of a fifo
*
* This routine adds an element to the end of a fifo object; it can be called
* from only a task context. A fiber pending on the fifo object will be made
* ready, and will preempt the running task immediately.
*
* If a fiber is waiting on the fifo, the address of the element is returned to
* the waiting fiber. Otherwise, the element is linked to the end of the list.
*
* RETURNS: N/A
*/
void nano_task_fifo_put(
struct nano_fifo *fifo, /* fifo on which to interact */
void *data /* data to send */
)
{
unsigned int imask;
imask = irq_lock_inline();
fifo->stat++;
if (fifo->stat <= 0) {
tCCS *ccs = _nano_wait_q_remove_no_check(&fifo->wait_q);
_nano_timeout_abort(ccs);
fiberRtnValueSet(ccs, (unsigned int)data);
_Swap(imask);
return;
} else {
enqueue_data(fifo, data);
}
irq_unlock_inline(imask);
}
/*******************************************************************************
*
* nano_fifo_put - add an element to the end of a fifo
*
* This is a convenience wrapper for the context-specific APIs. This is
* helpful whenever the exact scheduling context is not known, but should
* be avoided when the context is known up-front (to avoid unnecessary
* overhead).
*/
void nano_fifo_put(struct nano_fifo *fifo, void *data)
{
static void (*func[3])(struct nano_fifo *fifo, void *data) = {
nano_isr_fifo_put, nano_fiber_fifo_put, nano_task_fifo_put
};
func[context_type_get()](fifo, data);
}
FUNC_ALIAS(_fifo_get, nano_isr_fifo_get, void *);
FUNC_ALIAS(_fifo_get, nano_fiber_fifo_get, void *);
FUNC_ALIAS(_fifo_get, nano_task_fifo_get, void *);
FUNC_ALIAS(_fifo_get, nano_fifo_get, void *);
/*******************************************************************************
*
* dequeue_data - internal routine to remove data from a fifo
*
* RETURNS: the data item removed
*/
static inline void *dequeue_data(struct nano_fifo *fifo)
{
void *data = fifo->data_q.head;
if (fifo->stat == 0) {
/*
* The data_q and wait_q occupy the same space and have the same
* format, and there is already an API for resetting the wait_q, so
* use it.
*/
_nano_wait_q_reset(&fifo->wait_q);
} else {
fifo->data_q.head = *(void **)data;
}
return data;
}
/*******************************************************************************
*
* _fifo_get - get an element from the head a fifo
*
* Remove the head element from the specified nanokernel multiple-waiter fifo
* linked list fifo; it may be called from a fiber, task, or ISR context.
*
* If no elements are available, NULL is returned. The first word in the
* element contains invalid data because that memory location was used to store
* a pointer to the next element in the linked list.
*
* RETURNS: Pointer to head element in the list if available, otherwise NULL
*
* INTERNAL
* This function is capable of supporting invocations from fiber, task, and ISR
* contexts. However, the nano_isr_fifo_get, nano_task_fifo_get, and
* nano_fiber_fifo_get aliases are created to support any required
* implementation differences in the future without introducing a source code
* migration issue.
*/
void *_fifo_get(
struct nano_fifo *fifo /* fifo on which to interact */
)
{
void *data = NULL;
unsigned int imask;
imask = irq_lock_inline();
if (fifo->stat > 0) {
fifo->stat--;
data = dequeue_data(fifo);
}
irq_unlock_inline(imask);
return data;
}
/*******************************************************************************
*
* nano_fiber_fifo_get_wait - get the head element of a fifo, wait if emtpy
*
* Remove the head element from the specified system-level multiple-waiter
* fifo; it can only be called from a fiber context.
*
* If no elements are available, the calling fiber will pend until an element
* is put onto the fifo.
*
* The first word in the element contains invalid data because that memory
* location was used to store a pointer to the next element in the linked list.
*
* RETURNS: Pointer to head element in the list
*
* INTERNAL There exists a separate nano_task_fifo_get_wait() implementation
* since a task context cannot pend on a nanokernel object. Instead tasks will
* poll the fifo object.
*/
void *nano_fiber_fifo_get_wait(
struct nano_fifo *fifo /* fifo on which to interact */
)
{
void *data;
unsigned int imask;
imask = irq_lock_inline();
fifo->stat--;
if (fifo->stat < 0) {
_nano_wait_q_put(&fifo->wait_q);
data = (void *)_Swap(imask);
} else {
data = dequeue_data(fifo);
irq_unlock_inline(imask);
}
return data;
}
/*******************************************************************************
*
* nano_task_fifo_get_wait - get the head element of a fifo, poll if empty
*
* Remove the head element from the specified system-level multiple-waiter
* fifo; it can only be called from a task context.
*
* If no elements are available, the calling task will poll until an
* until an element is put onto the fifo.
*
* The first word in the element contains invalid data because that memory
* location was used to store a pointer to the next element in the linked list.
*
* RETURNS: Pointer to head element in the list
*/
void *nano_task_fifo_get_wait(
struct nano_fifo *fifo /* fifo on which to interact */
)
{
void *data;
unsigned int imask;
/* spin until data is put onto the FIFO */
while (1) {
imask = irq_lock_inline();
/*
* Predict that the branch will be taken to break out of the loop.
* There is little cost to a misprediction since that leads to idle.
*/
if (likely(fifo->stat > 0))
break;
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
nano_cpu_atomic_idle(imask);
}
fifo->stat--;
data = dequeue_data(fifo);
irq_unlock_inline(imask);
return data;
}
/*******************************************************************************
*
* nano_fifo_get_wait - get the head element of a fifo, poll/pend if empty
*
* This is a convenience wrapper for the context-specific APIs. This is
* helpful whenever the exact scheduling context is not known, but should
* be avoided when the context is known up-front (to avoid unnecessary
* overhead).
*
* It's only valid to call this API from a fiber or a task.
*/
void *nano_fifo_get_wait(struct nano_fifo *fifo)
{
static void *(*func[3])(struct nano_fifo *fifo) = {
NULL, nano_fiber_fifo_get_wait, nano_task_fifo_get_wait
};
return func[context_type_get()](fifo);
}
#ifdef CONFIG_NANO_TIMEOUTS
/*!
* @brief get the head element of a fifo, pend with a timeout if empty
*
* Remove the head element from the specified nanokernel fifo; it can only be
* called from a task context.
*
* If no elements are available, the calling task will pend until an element
* is put onto the fifo, or the timeout expires, whichever comes first.
*
* The first word in the element contains invalid data because that memory
* location was used to store a pointer to the next element in the linked
* list.
*
* @param fifo the FIFO on which to operate
* @param timeout_in_ticks time to wait in ticks
*
* return Pointer to head element in the list, NULL if timed out
*/
void *nano_fiber_fifo_get_wait_timeout(struct nano_fifo *fifo,
int32_t timeout_in_ticks)
{
unsigned int key;
void *data;
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
return nano_fiber_fifo_get_wait(fifo);
}
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
return nano_fiber_fifo_get(fifo);
}
key = irq_lock_inline();
fifo->stat--;
if (fifo->stat < 0) {
_nano_timeout_add(_nanokernel.current, &fifo->wait_q, timeout_in_ticks);
_nano_wait_q_put(&fifo->wait_q);
data = (void *)_Swap(key);
} else {
data = dequeue_data(fifo);
irq_unlock_inline(key);
}
return data;
}
/*!
* @brief get the head element of a fifo, poll with a timeout if empty
*
* Remove the head element from the specified nanokernel fifo; it can only be
* called from a task context.
*
* If no elements are available, the calling task will poll until an element
* is put onto the fifo, or the timeout expires, whichever comes first.
*
* The first word in the element contains invalid data because that memory
* location was used to store a pointer to the next element in the linked
* list.
*
* @param fifo the FIFO on which to operate
* @param timeout_in_ticks time to wait in ticks
*
* return Pointer to head element in the list, NULL if timed out
*/
void *nano_task_fifo_get_wait_timeout(struct nano_fifo *fifo,
int32_t timeout_in_ticks)
{
int64_t cur_ticks, limit;
unsigned int key;
void *data;
if (unlikely(TICKS_UNLIMITED == timeout_in_ticks)) {
return nano_task_fifo_get_wait(fifo);
}
if (unlikely(TICKS_NONE == timeout_in_ticks)) {
return nano_task_fifo_get(fifo);
}
key = irq_lock_inline();
cur_ticks = nano_tick_get();
limit = cur_ticks + timeout_in_ticks;
while (cur_ticks < limit) {
/*
* Predict that the branch will be taken to break out of the loop.
* There is little cost to a misprediction since that leads to idle.
*/
if (likely(fifo->stat > 0)) {
fifo->stat--;
data = dequeue_data(fifo);
irq_unlock_inline(key);
return data;
}
/* see explanation in nano_stack.c:nano_task_stack_pop_wait() */
nano_cpu_atomic_idle(key);
key = irq_lock_inline();
cur_ticks = nano_tick_get();
}
irq_unlock_inline(key);
return NULL;
}
#endif /* CONFIG_NANO_TIMEOUTS */