371 lines
8.8 KiB
C
371 lines
8.8 KiB
C
/*
|
|
* Copyright (c) 2016 Wind River Systems, Inc.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <nano_private.h>
|
|
#include <atomic.h>
|
|
#include <ksched.h>
|
|
#include <wait_q.h>
|
|
|
|
/* set the bit corresponding to prio in ready q bitmap */
|
|
static void _set_ready_q_prio_bit(int prio)
|
|
{
|
|
int bmap_index = _get_ready_q_prio_bmap_index(prio);
|
|
uint32_t *bmap = &_nanokernel.ready_q.prio_bmap[bmap_index];
|
|
|
|
*bmap |= _get_ready_q_prio_bit(prio);
|
|
}
|
|
|
|
/* clear the bit corresponding to prio in ready q bitmap */
|
|
static void _clear_ready_q_prio_bit(int prio)
|
|
{
|
|
int bmap_index = _get_ready_q_prio_bmap_index(prio);
|
|
uint32_t *bmap = &_nanokernel.ready_q.prio_bmap[bmap_index];
|
|
|
|
*bmap &= ~_get_ready_q_prio_bit(prio);
|
|
}
|
|
|
|
/*
|
|
* Add thread to the ready queue, in the slot for its priority; the thread
|
|
* must not be on a wait queue.
|
|
*
|
|
* This function, along with _move_thread_to_end_of_prio_q(), are the _only_
|
|
* places where a thread is put on the ready queue.
|
|
*
|
|
* Interrupts must be locked when calling this function.
|
|
*/
|
|
|
|
void _add_thread_to_ready_q(struct k_thread *thread)
|
|
{
|
|
int q_index = _get_ready_q_q_index(thread->prio);
|
|
sys_dlist_t *q = &_nanokernel.ready_q.q[q_index];
|
|
|
|
_set_ready_q_prio_bit(thread->prio);
|
|
sys_dlist_append(q, &thread->k_q_node);
|
|
|
|
struct k_thread **cache = &_nanokernel.ready_q.cache;
|
|
|
|
*cache = *cache && _is_prio_higher(thread->prio, (*cache)->prio) ?
|
|
thread : *cache;
|
|
}
|
|
|
|
/*
|
|
* This function, along with _move_thread_to_end_of_prio_q(), are the _only_
|
|
* places where a thread is taken off the ready queue.
|
|
*
|
|
* Interrupts must be locked when calling this function.
|
|
*/
|
|
|
|
void _remove_thread_from_ready_q(struct k_thread *thread)
|
|
{
|
|
int q_index = _get_ready_q_q_index(thread->prio);
|
|
sys_dlist_t *q = &_nanokernel.ready_q.q[q_index];
|
|
|
|
sys_dlist_remove(&thread->k_q_node);
|
|
if (sys_dlist_is_empty(q)) {
|
|
_clear_ready_q_prio_bit(thread->prio);
|
|
}
|
|
|
|
struct k_thread **cache = &_nanokernel.ready_q.cache;
|
|
|
|
*cache = *cache == thread ? NULL : *cache;
|
|
}
|
|
|
|
/* reschedule threads if the scheduler is not locked */
|
|
/* not callable from ISR */
|
|
/* must be called with interrupts locked */
|
|
void _reschedule_threads(int key)
|
|
{
|
|
K_DEBUG("rescheduling threads\n");
|
|
|
|
if (_must_switch_threads()) {
|
|
K_DEBUG("context-switching out %p\n", _current);
|
|
_Swap(key);
|
|
} else {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
void k_sched_lock(void)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
atomic_inc(&_nanokernel.current->sched_locked);
|
|
|
|
K_DEBUG("scheduler locked (%p:%d)\n",
|
|
_current, _current->sched_locked);
|
|
}
|
|
|
|
void k_sched_unlock(void)
|
|
{
|
|
__ASSERT(_nanokernel.current->sched_locked > 0, "");
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
int key = irq_lock();
|
|
|
|
atomic_dec(&_nanokernel.current->sched_locked);
|
|
|
|
K_DEBUG("scheduler unlocked (%p:%d)\n",
|
|
_current, _current->sched_locked);
|
|
|
|
_reschedule_threads(key);
|
|
}
|
|
|
|
/*
|
|
* Callback for sys_dlist_insert_at() to find the correct insert point in a
|
|
* wait queue (priority-based).
|
|
*/
|
|
static int _is_wait_q_insert_point(sys_dnode_t *dnode_info, void *insert_prio)
|
|
{
|
|
struct k_thread *waitq_node =
|
|
CONTAINER_OF(dnode_info, struct k_thread, k_q_node);
|
|
|
|
return _is_prio_higher((int)insert_prio, waitq_node->prio);
|
|
}
|
|
|
|
/* convert milliseconds to ticks */
|
|
|
|
#define ceiling(numerator, divider) \
|
|
(((numerator) + ((divider) - 1)) / (divider))
|
|
|
|
int32_t _ms_to_ticks(int32_t ms)
|
|
{
|
|
int64_t ms_ticks_per_sec = (int64_t)ms * sys_clock_ticks_per_sec;
|
|
|
|
return (int32_t)ceiling(ms_ticks_per_sec, MSEC_PER_SEC);
|
|
}
|
|
|
|
/* pend the specified thread: it must *not* be in the ready queue */
|
|
/* must be called with interrupts locked */
|
|
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, int32_t timeout)
|
|
{
|
|
sys_dlist_t *dlist = (sys_dlist_t *)wait_q;
|
|
|
|
sys_dlist_insert_at(dlist, &thread->k_q_node,
|
|
_is_wait_q_insert_point, (void *)thread->prio);
|
|
|
|
_mark_thread_as_pending(thread);
|
|
|
|
if (timeout != K_FOREVER) {
|
|
_mark_thread_as_timing(thread);
|
|
_add_thread_timeout(thread, wait_q,
|
|
_TICK_ALIGN + _ms_to_ticks(timeout));
|
|
}
|
|
}
|
|
|
|
/* pend the current thread */
|
|
/* must be called with interrupts locked */
|
|
void _pend_current_thread(_wait_q_t *wait_q, int32_t timeout)
|
|
{
|
|
_remove_thread_from_ready_q(_current);
|
|
_pend_thread(_current, wait_q, timeout);
|
|
}
|
|
|
|
/*
|
|
* Find the next thread to run when there is no thread in the cache and update
|
|
* the cache.
|
|
*/
|
|
static struct k_thread *__get_next_ready_thread(void)
|
|
{
|
|
int prio = _get_highest_ready_prio();
|
|
int q_index = _get_ready_q_q_index(prio);
|
|
sys_dlist_t *list = &_nanokernel.ready_q.q[q_index];
|
|
|
|
__ASSERT(!sys_dlist_is_empty(list),
|
|
"no thread to run (prio: %d, queue index: %u)!\n",
|
|
prio, q_index);
|
|
|
|
struct k_thread *thread =
|
|
(struct k_thread *)sys_dlist_peek_head_not_empty(list);
|
|
|
|
_nanokernel.ready_q.cache = thread;
|
|
|
|
return thread;
|
|
}
|
|
|
|
/* find which one is the next thread to run */
|
|
/* must be called with interrupts locked */
|
|
struct k_thread *_get_next_ready_thread(void)
|
|
{
|
|
struct k_thread *cache = _nanokernel.ready_q.cache;
|
|
|
|
return cache ? cache : __get_next_ready_thread();
|
|
}
|
|
|
|
/*
|
|
* Check if there is a thread of higher prio than the current one. Should only
|
|
* be called if we already know that the current thread is preemptible.
|
|
*/
|
|
int __must_switch_threads(void)
|
|
{
|
|
K_DEBUG("current prio: %d, highest prio: %d\n",
|
|
_current->prio, _get_highest_ready_prio());
|
|
|
|
extern void _dump_ready_q(void);
|
|
_dump_ready_q();
|
|
|
|
return _is_prio_higher(_get_highest_ready_prio(), _current->prio);
|
|
}
|
|
|
|
int _is_next_thread_current(void)
|
|
{
|
|
return _get_next_ready_thread() == _current;
|
|
}
|
|
|
|
int k_thread_priority_get(k_tid_t thread)
|
|
{
|
|
return thread->prio;
|
|
}
|
|
|
|
void k_thread_priority_set(k_tid_t tid, int prio)
|
|
{
|
|
/*
|
|
* Use NULL, since we cannot know what the entry point is (we do not
|
|
* keep track of it) and idle cannot change its priority.
|
|
*/
|
|
_ASSERT_VALID_PRIO(prio, NULL);
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
struct k_thread *thread = (struct k_thread *)tid;
|
|
int key = irq_lock();
|
|
|
|
_thread_priority_set(thread, prio);
|
|
_reschedule_threads(key);
|
|
}
|
|
|
|
/*
|
|
* Interrupts must be locked when calling this function.
|
|
*
|
|
* This function, along with _add_thread_to_ready_q() and
|
|
* _remove_thread_from_ready_q(), are the _only_ places where a thread is
|
|
* taken off or put on the ready queue.
|
|
*/
|
|
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
|
|
{
|
|
int q_index = _get_ready_q_q_index(thread->prio);
|
|
sys_dlist_t *q = &_nanokernel.ready_q.q[q_index];
|
|
|
|
if (sys_dlist_is_tail(q, &thread->k_q_node)) {
|
|
return;
|
|
}
|
|
|
|
sys_dlist_remove(&thread->k_q_node);
|
|
sys_dlist_append(q, &thread->k_q_node);
|
|
|
|
struct k_thread **cache = &_nanokernel.ready_q.cache;
|
|
|
|
*cache = *cache == thread ? NULL : *cache;
|
|
}
|
|
|
|
void k_yield(void)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
|
|
int key = irq_lock();
|
|
|
|
_move_thread_to_end_of_prio_q(_current);
|
|
|
|
if (_current == _get_next_ready_thread()) {
|
|
irq_unlock(key);
|
|
} else {
|
|
_Swap(key);
|
|
}
|
|
}
|
|
|
|
void k_sleep(int32_t duration)
|
|
{
|
|
__ASSERT(!_is_in_isr(), "");
|
|
__ASSERT(duration != K_FOREVER, "");
|
|
|
|
K_DEBUG("thread %p for %d ns\n", _current, duration);
|
|
|
|
/* wait of 0 ns is treated as a 'yield' */
|
|
if (duration == 0) {
|
|
k_yield();
|
|
return;
|
|
}
|
|
|
|
int key = irq_lock();
|
|
|
|
_mark_thread_as_timing(_current);
|
|
_remove_thread_from_ready_q(_current);
|
|
_add_thread_timeout(_current, NULL,
|
|
_TICK_ALIGN + _ms_to_ticks(duration));
|
|
|
|
_Swap(key);
|
|
}
|
|
|
|
void k_wakeup(k_tid_t thread)
|
|
{
|
|
int key = irq_lock();
|
|
|
|
/* verify first if thread is not waiting on an object */
|
|
if (_is_thread_pending(thread)) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
if (_abort_thread_timeout(thread) < 0) {
|
|
irq_unlock(key);
|
|
return;
|
|
}
|
|
|
|
_ready_thread(thread);
|
|
|
|
if (_is_in_isr()) {
|
|
irq_unlock(key);
|
|
} else {
|
|
_reschedule_threads(key);
|
|
}
|
|
}
|
|
|
|
k_tid_t k_current_get(void)
|
|
{
|
|
return _current;
|
|
}
|
|
|
|
/* debug aid */
|
|
void _dump_ready_q(void)
|
|
{
|
|
K_DEBUG("bitmap: %x\n", _ready_q.prio_bmap[0]);
|
|
for (int prio = 0; prio < K_NUM_PRIORITIES; prio++) {
|
|
K_DEBUG("prio: %d, head: %p\n",
|
|
prio - CONFIG_NUM_COOP_PRIORITIES,
|
|
sys_dlist_peek_head(&_ready_q.q[prio]));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_TIMESLICING
|
|
extern int32_t _time_slice_duration; /* Measured in ms */
|
|
extern int32_t _time_slice_elapsed; /* Measured in ms */
|
|
extern int _time_slice_prio_ceiling;
|
|
|
|
void k_sched_time_slice_set(int32_t duration_in_ms, int prio)
|
|
{
|
|
__ASSERT(duration_in_ms >= 0, "");
|
|
__ASSERT((prio >= 0) && (prio < CONFIG_NUM_PREEMPT_PRIORITIES), "");
|
|
|
|
_time_slice_duration = duration_in_ms;
|
|
_time_slice_elapsed = 0;
|
|
_time_slice_prio_ceiling = prio;
|
|
}
|
|
#endif /* CONFIG_TIMESLICING */
|
|
|
|
int k_is_preempt_thread(void)
|
|
{
|
|
return !_is_in_isr() && _is_preempt(_current);
|
|
}
|