584 lines
15 KiB
C
584 lines
15 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/* These assertions are very useful when debugging the tree code
|
|
* itself, but produce significant performance degradation as they are
|
|
* checked many times per operation. Leave them off unless you're
|
|
* working on the rbtree code itself
|
|
*/
|
|
#define CHECK(n) /**/
|
|
/* #define CHECK(n) __ASSERT_NO_MSG(n) */
|
|
|
|
#include <kernel.h>
|
|
#include <misc/rb.h>
|
|
|
|
enum rb_color { RED = 0, BLACK = 1 };
|
|
|
|
static struct rbnode *get_child(struct rbnode *n, int side)
|
|
{
|
|
CHECK(n);
|
|
if (side) {
|
|
return n->children[1];
|
|
}
|
|
|
|
uintptr_t l = (uintptr_t) n->children[0];
|
|
|
|
l &= ~1ul;
|
|
return (struct rbnode *) l;
|
|
}
|
|
|
|
static void set_child(struct rbnode *n, int side, void *val)
|
|
{
|
|
CHECK(n);
|
|
if (side) {
|
|
n->children[1] = val;
|
|
} else {
|
|
uintptr_t old = (uintptr_t) n->children[0];
|
|
uintptr_t new = (uintptr_t) val;
|
|
|
|
n->children[0] = (void *) (new | (old & 1ul));
|
|
}
|
|
}
|
|
|
|
static enum rb_color get_color(struct rbnode *n)
|
|
{
|
|
CHECK(n);
|
|
return ((uintptr_t)n->children[0]) & 1ul;
|
|
}
|
|
|
|
static int is_black(struct rbnode *n)
|
|
{
|
|
return get_color(n) == BLACK;
|
|
}
|
|
|
|
static int is_red(struct rbnode *n)
|
|
{
|
|
return get_color(n) == RED;
|
|
}
|
|
|
|
static void set_color(struct rbnode *n, enum rb_color color)
|
|
{
|
|
CHECK(n);
|
|
|
|
uintptr_t *p = (void *) &n->children[0];
|
|
|
|
*p = (*p & ~1ul) | color;
|
|
}
|
|
|
|
/* Searches the tree down to a node that is either identical with the
|
|
* "node" argument or has an empty/leaf child pointer where "node"
|
|
* should be, leaving all nodes found in the resulting stack. Note
|
|
* that tree must not be empty and that stack should be allocated to
|
|
* contain at least tree->max_depth entries! Returns the number of
|
|
* entries pushed onto the stack.
|
|
*/
|
|
static int find_and_stack(struct rbtree *tree, struct rbnode *node,
|
|
struct rbnode **stack)
|
|
{
|
|
int sz = 0;
|
|
|
|
stack[sz++] = tree->root;
|
|
|
|
while (stack[sz - 1] != node) {
|
|
int side = tree->lessthan_fn(node, stack[sz - 1]) ? 0 : 1;
|
|
struct rbnode *ch = get_child(stack[sz - 1], side);
|
|
|
|
if (ch) {
|
|
stack[sz++] = ch;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sz;
|
|
}
|
|
|
|
struct rbnode *_rb_get_minmax(struct rbtree *tree, int side)
|
|
{
|
|
struct rbnode *n;
|
|
|
|
for (n = tree->root; n && get_child(n, side); n = get_child(n, side))
|
|
;
|
|
return n;
|
|
}
|
|
|
|
static int get_side(struct rbnode *parent, struct rbnode *child)
|
|
{
|
|
CHECK(get_child(parent, 0) == child || get_child(parent, 1) == child);
|
|
|
|
return get_child(parent, 1) == child ? 1 : 0;
|
|
}
|
|
|
|
/* Swaps the position of the two nodes at the top of the provided
|
|
* stack, modifying the stack accordingly. Does not change the color
|
|
* of either node. That is, it effects the following transition (or
|
|
* its mirror if N is on the other side of P, of course):
|
|
*
|
|
* P N
|
|
* N c --> a P
|
|
* a b b c
|
|
*
|
|
*/
|
|
static void rotate(struct rbnode **stack, int stacksz)
|
|
{
|
|
CHECK(stacksz >= 2);
|
|
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
struct rbnode *child = stack[stacksz - 1];
|
|
int side = get_side(parent, child);
|
|
struct rbnode *a = get_child(child, side);
|
|
struct rbnode *b = get_child(child, !side);
|
|
|
|
if (stacksz >= 3) {
|
|
struct rbnode *grandparent = stack[stacksz - 3];
|
|
|
|
set_child(grandparent, get_side(grandparent, parent), child);
|
|
}
|
|
|
|
set_child(child, side, a);
|
|
set_child(child, !side, parent);
|
|
set_child(parent, side, b);
|
|
stack[stacksz - 2] = child;
|
|
stack[stacksz - 1] = parent;
|
|
}
|
|
|
|
/* The node at the top of the provided stack is red, and its parent is
|
|
* too. Iteratively fix the tree so it becomes a valid red black tree
|
|
* again
|
|
*/
|
|
static void fix_extra_red(struct rbnode **stack, int stacksz)
|
|
{
|
|
while (stacksz > 1) {
|
|
struct rbnode *node = stack[stacksz - 1];
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
|
|
/* Correct child colors are a precondition of the loop */
|
|
CHECK(!get_child(node, 0) || is_black(get_child(node, 0)));
|
|
CHECK(!get_child(node, 1) || is_black(get_child(node, 1)));
|
|
|
|
if (is_black(parent)) {
|
|
return;
|
|
}
|
|
|
|
/* We are guaranteed to have a grandparent if our
|
|
* parent is red, as red nodes cannot be the root
|
|
*/
|
|
CHECK(stacksz >= 2);
|
|
|
|
struct rbnode *grandparent = stack[stacksz - 3];
|
|
int side = get_side(grandparent, parent);
|
|
struct rbnode *aunt = get_child(grandparent, !side);
|
|
|
|
if ((aunt != NULL) && is_red(aunt)) {
|
|
set_color(grandparent, RED);
|
|
set_color(parent, BLACK);
|
|
set_color(aunt, BLACK);
|
|
|
|
/* We colored the grandparent red, which might
|
|
* have a red parent, so continue iterating
|
|
* from there.
|
|
*/
|
|
stacksz -= 2;
|
|
continue;
|
|
}
|
|
|
|
/* We can rotate locally to fix the whole tree. First
|
|
* make sure that node is on the same side of parent
|
|
* as parent is of grandparent.
|
|
*/
|
|
int parent_side = get_side(parent, node);
|
|
|
|
if (parent_side != side) {
|
|
rotate(stack, stacksz);
|
|
node = stack[stacksz - 1];
|
|
}
|
|
|
|
/* Rotate the grandparent with parent, swapping colors */
|
|
rotate(stack, stacksz - 1);
|
|
set_color(stack[stacksz - 3], BLACK);
|
|
set_color(stack[stacksz - 2], RED);
|
|
return;
|
|
}
|
|
|
|
/* If we exit the loop, it's because our node is now the root,
|
|
* which must be black.
|
|
*/
|
|
set_color(stack[0], BLACK);
|
|
}
|
|
|
|
void rb_insert(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
set_child(node, 0, NULL);
|
|
set_child(node, 1, NULL);
|
|
|
|
if (!tree->root) {
|
|
tree->root = node;
|
|
tree->max_depth = 1;
|
|
set_color(node, BLACK);
|
|
return;
|
|
}
|
|
|
|
struct rbnode *stack[tree->max_depth + 1];
|
|
|
|
int stacksz = find_and_stack(tree, node, stack);
|
|
|
|
struct rbnode *parent = stack[stacksz - 1];
|
|
|
|
int side = tree->lessthan_fn(node, parent) ? 0 : 1;
|
|
|
|
set_child(parent, side, node);
|
|
set_color(node, RED);
|
|
|
|
stack[stacksz++] = node;
|
|
fix_extra_red(stack, stacksz);
|
|
|
|
if (stacksz > tree->max_depth) {
|
|
tree->max_depth = stacksz;
|
|
}
|
|
|
|
/* We may have rotated up into the root! */
|
|
tree->root = stack[0];
|
|
CHECK(is_black(tree->root));
|
|
}
|
|
|
|
/* Called for a node N (at the top of the stack) which after a
|
|
* deletion operation is "missing a black" in its subtree. By
|
|
* construction N must be black (because if it was red it would be
|
|
* trivially fixed by recoloring and we wouldn't be here). Fixes up
|
|
* the tree to preserve red/black rules. The "null_node" pointer is
|
|
* for situations where we are removing a childless black node. The
|
|
* tree munging needs a real node for simplicity, so we use it and
|
|
* then clean it up (replace it with a simple NULL child in the
|
|
* parent) when finished.
|
|
*/
|
|
static void fix_missing_black(struct rbnode **stack, int stacksz,
|
|
struct rbnode *null_node)
|
|
{
|
|
/* Loop upward until we reach the root */
|
|
while (stacksz > 1) {
|
|
struct rbnode *c0, *c1, *inner, *outer;
|
|
struct rbnode *n = stack[stacksz - 1];
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
int n_side = get_side(parent, n);
|
|
struct rbnode *sib = get_child(parent, !n_side);
|
|
|
|
CHECK(is_black(n));
|
|
|
|
/* Guarantee the sibling is black, rotating N down a
|
|
* level if needed (after rotate() our parent is the
|
|
* child of our previous-sibling, so N is lower in the
|
|
* tree)
|
|
*/
|
|
if (!is_black(sib)) {
|
|
stack[stacksz - 1] = sib;
|
|
rotate(stack, stacksz);
|
|
set_color(parent, RED);
|
|
set_color(sib, BLACK);
|
|
stack[stacksz++] = n;
|
|
|
|
parent = stack[stacksz - 2];
|
|
sib = get_child(parent, !n_side);
|
|
}
|
|
|
|
CHECK(sib);
|
|
|
|
/* Cases where the sibling has only black children
|
|
* have simple resolutions
|
|
*/
|
|
c0 = get_child(sib, 0);
|
|
c1 = get_child(sib, 1);
|
|
if ((!c0 || is_black(c0)) && (!c1 || is_black(c1))) {
|
|
if (n == null_node) {
|
|
set_child(parent, n_side, NULL);
|
|
}
|
|
|
|
set_color(sib, RED);
|
|
if (is_black(parent)) {
|
|
/* Balance the sibling's subtree by
|
|
* coloring it red, then our parent
|
|
* has a missing black so iterate
|
|
* upward
|
|
*/
|
|
stacksz--;
|
|
continue;
|
|
} else {
|
|
/* Recoloring makes the whole tree OK */
|
|
set_color(parent, BLACK);
|
|
return;
|
|
}
|
|
}
|
|
|
|
CHECK((c0 && is_red(c0)) || (c1 && is_red(c1)));
|
|
|
|
/* We know sibling has at least one red child. Fix it
|
|
* so that the far/outer position (i.e. on the
|
|
* opposite side from N) is definitely red.
|
|
*/
|
|
outer = get_child(sib, !n_side);
|
|
if (!(outer && is_red(outer))) {
|
|
inner = get_child(sib, n_side);
|
|
|
|
stack[stacksz - 1] = sib;
|
|
stack[stacksz++] = inner;
|
|
rotate(stack, stacksz);
|
|
set_color(sib, RED);
|
|
set_color(inner, BLACK);
|
|
|
|
/* Restore stack state to have N on the top
|
|
* and make sib reflect the new sibling
|
|
*/
|
|
sib = stack[stacksz - 2];
|
|
outer = get_child(sib, !n_side);
|
|
stack[stacksz - 2] = n;
|
|
stacksz--;
|
|
}
|
|
|
|
/* Finally, the sibling must have a red child in the
|
|
* far/outer slot. We can rotate sib with our parent
|
|
* and recolor to produce a valid tree.
|
|
*/
|
|
CHECK(is_red(outer));
|
|
set_color(sib, get_color(parent));
|
|
set_color(parent, BLACK);
|
|
set_color(outer, BLACK);
|
|
stack[stacksz - 1] = sib;
|
|
rotate(stack, stacksz);
|
|
if (n == null_node) {
|
|
set_child(parent, n_side, NULL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
void rb_remove(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
struct rbnode *stack[tree->max_depth + 1], *tmp;
|
|
|
|
int stacksz = find_and_stack(tree, node, stack);
|
|
|
|
if (node != stack[stacksz - 1]) {
|
|
return;
|
|
}
|
|
|
|
/* We can only remove a node with zero or one child, if we
|
|
* have two then pick the "biggest" child of side 0 (smallest
|
|
* of 1 would work too) and swap our spot in the tree with
|
|
* that one
|
|
*/
|
|
if (get_child(node, 0) && get_child(node, 1)) {
|
|
int stacksz0 = stacksz;
|
|
struct rbnode *hiparent, *loparent;
|
|
struct rbnode *node2 = get_child(node, 0);
|
|
|
|
hiparent = stacksz > 1 ? stack[stacksz - 2] : NULL;
|
|
stack[stacksz++] = node2;
|
|
while (get_child(node2, 1)) {
|
|
node2 = get_child(node2, 1);
|
|
stack[stacksz++] = node2;
|
|
}
|
|
|
|
loparent = stack[stacksz - 2];
|
|
|
|
/* Now swap the position of node/node2 in the tree.
|
|
* Design note: this is a spot where being an
|
|
* intrusive data structure hurts us fairly badly.
|
|
* The trees you see in textbooks do this by swapping
|
|
* the "data" pointers between the two nodes, but we
|
|
* have a few special cases to check. In principle
|
|
* this works by swapping the child pointers between
|
|
* the nodes and retargetting the nodes pointing to
|
|
* them from their parents, but: (1) the upper node
|
|
* may be the root of the tree and not have a parent,
|
|
* and (2) the lower node may be a direct child of the
|
|
* upper node. Remember to swap the color bits of the
|
|
* two nodes also. And of course we don't have parent
|
|
* pointers, so the stack tracking this structure
|
|
* needs to be swapped too!
|
|
*/
|
|
if (hiparent) {
|
|
set_child(hiparent, get_side(hiparent, node), node2);
|
|
} else {
|
|
tree->root = node2;
|
|
}
|
|
|
|
if (loparent == node) {
|
|
set_child(node, 0, get_child(node2, 0));
|
|
set_child(node2, 0, node);
|
|
} else {
|
|
set_child(loparent, get_side(loparent, node2), node);
|
|
tmp = get_child(node, 0);
|
|
set_child(node, 0, get_child(node2, 0));
|
|
set_child(node2, 0, tmp);
|
|
}
|
|
|
|
set_child(node2, 1, get_child(node, 1));
|
|
set_child(node, 1, NULL);
|
|
|
|
tmp = stack[stacksz0 - 1];
|
|
stack[stacksz0 - 1] = stack[stacksz - 1];
|
|
stack[stacksz - 1] = tmp;
|
|
|
|
int ctmp = get_color(node);
|
|
|
|
set_color(node, get_color(node2));
|
|
set_color(node2, ctmp);
|
|
}
|
|
|
|
CHECK(!get_child(node, 0) || !get_child(node, 1));
|
|
|
|
struct rbnode *child = get_child(node, 0);
|
|
|
|
if (child == NULL) {
|
|
child = get_child(node, 1);
|
|
}
|
|
|
|
/* Removing the root */
|
|
if (stacksz < 2) {
|
|
tree->root = child;
|
|
if (child) {
|
|
set_color(child, BLACK);
|
|
} else {
|
|
tree->max_depth = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct rbnode *parent = stack[stacksz - 2];
|
|
|
|
/* Special case: if the node to be removed is childless, then
|
|
* we leave it in place while we do the missing black
|
|
* rotations, which will replace it with a proper NULL when
|
|
* they isolate it.
|
|
*/
|
|
if (!child) {
|
|
if (is_black(node)) {
|
|
fix_missing_black(stack, stacksz, node);
|
|
} else {
|
|
/* Red childless nodes can just be dropped */
|
|
set_child(parent, get_side(parent, node), NULL);
|
|
}
|
|
} else {
|
|
set_child(parent, get_side(parent, node), child);
|
|
|
|
/* Check colors, if one was red (at least one must have been
|
|
* black in a valid tree), then we're done. Otherwise we have
|
|
* a missing black we need to fix
|
|
*/
|
|
if (is_red(node) || is_red(child)) {
|
|
set_color(child, BLACK);
|
|
} else {
|
|
stack[stacksz - 1] = child;
|
|
fix_missing_black(stack, stacksz, NULL);
|
|
}
|
|
}
|
|
|
|
/* We may have rotated up into the root! */
|
|
tree->root = stack[0];
|
|
}
|
|
|
|
void _rb_walk(struct rbnode *node, rb_visit_t visit_fn, void *cookie)
|
|
{
|
|
if (node != NULL) {
|
|
_rb_walk(get_child(node, 0), visit_fn, cookie);
|
|
visit_fn(node, cookie);
|
|
_rb_walk(get_child(node, 1), visit_fn, cookie);
|
|
}
|
|
}
|
|
|
|
struct rbnode *_rb_child(struct rbnode *node, int side)
|
|
{
|
|
return get_child(node, side);
|
|
}
|
|
|
|
int _rb_is_black(struct rbnode *node)
|
|
{
|
|
return is_black(node);
|
|
}
|
|
|
|
int rb_contains(struct rbtree *tree, struct rbnode *node)
|
|
{
|
|
struct rbnode *n = tree->root;
|
|
|
|
while (n && n != node) {
|
|
n = get_child(n, tree->lessthan_fn(n, node));
|
|
}
|
|
|
|
return n == node;
|
|
}
|
|
|
|
/* Pushes the node and its chain of left-side children onto the stack
|
|
* in the foreach struct, returning the last node, which is the next
|
|
* node to iterate. By construction node will always be a right child
|
|
* or the root, so is_left must be false.
|
|
*/
|
|
static inline struct rbnode *stack_left_limb(struct rbnode *n,
|
|
struct _rb_foreach *f)
|
|
{
|
|
f->top++;
|
|
f->stack[f->top] = n;
|
|
f->is_left[f->top] = 0;
|
|
|
|
while ((n = get_child(n, 0))) {
|
|
f->top++;
|
|
f->stack[f->top] = n;
|
|
f->is_left[f->top] = 1;
|
|
}
|
|
|
|
return f->stack[f->top];
|
|
}
|
|
|
|
/* The foreach tracking works via a dynamic stack allocated via
|
|
* alloca(). The current node is found in stack[top] (and its parent
|
|
* is thus stack[top-1]). The side of each stacked node from its
|
|
* parent is stored in is_left[] (i.e. if is_left[top] is true, then
|
|
* node/stack[top] is the left child of stack[top-1]). The special
|
|
* case of top == -1 indicates that the stack is uninitialized and we
|
|
* need to push an initial stack starting at the root.
|
|
*/
|
|
struct rbnode *_rb_foreach_next(struct rbtree *tree, struct _rb_foreach *f)
|
|
{
|
|
struct rbnode *n;
|
|
|
|
if (!tree->root) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialization condition, pick the leftmost child of the
|
|
* root as our first node, initializing the stack on the way.
|
|
*/
|
|
if (f->top == -1) {
|
|
return stack_left_limb(tree->root, f);
|
|
}
|
|
|
|
/* The next child from a given node is the leftmost child of
|
|
* it's right subtree if it has a right child
|
|
*/
|
|
n = get_child(f->stack[f->top], 1);
|
|
if (n != NULL) {
|
|
return stack_left_limb(n, f);
|
|
}
|
|
|
|
/* Otherwise if the node is a left child of its parent, the
|
|
* next node is the parent (note that the root is stacked
|
|
* above with is_left set to 0, so this condition still works
|
|
* even if node has no parent).
|
|
*/
|
|
if (f->is_left[f->top]) {
|
|
return f->stack[--f->top];
|
|
}
|
|
|
|
/* If we had no left tree and are a right child then our
|
|
* parent was already walked, so walk up the stack looking for
|
|
* a left child (whose parent is unwalked, and thus next).
|
|
*/
|
|
while (f->top > 0 && !f->is_left[f->top]) {
|
|
f->top--;
|
|
}
|
|
|
|
f->top--;
|
|
return f->top >= 0 ? f->stack[f->top] : NULL;
|
|
}
|