364 lines
9.0 KiB
C
364 lines
9.0 KiB
C
/*
|
|
* Copyright (c) 2018 Intel Corporation
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <kernel.h>
|
|
#include <string.h>
|
|
#include <misc/__assert.h>
|
|
#include <misc/mempool_base.h>
|
|
#include <misc/mempool.h>
|
|
|
|
static bool level_empty(struct sys_mem_pool_base *p, int l)
|
|
{
|
|
return sys_dlist_is_empty(&p->levels[l].free_list);
|
|
}
|
|
|
|
static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block)
|
|
{
|
|
return (u8_t *)p->buf + lsz * block;
|
|
}
|
|
|
|
static int block_num(struct sys_mem_pool_base *p, void *block, int sz)
|
|
{
|
|
return ((u8_t *)block - (u8_t *)p->buf) / sz;
|
|
}
|
|
|
|
/* Places a 32 bit output pointer in word, and an integer bit index
|
|
* within that word as the return value
|
|
*/
|
|
static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn,
|
|
u32_t **word)
|
|
{
|
|
u32_t *bitarray = level <= p->max_inline_level ?
|
|
&p->levels[level].bits : p->levels[level].bits_p;
|
|
|
|
*word = &bitarray[bn / 32];
|
|
|
|
return bn & 0x1f;
|
|
}
|
|
|
|
static void set_free_bit(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
u32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
*word |= (1<<bit);
|
|
}
|
|
|
|
static void clear_free_bit(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
u32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
*word &= ~(1<<bit);
|
|
}
|
|
|
|
/* Returns all four of the free bits for the specified blocks
|
|
* "partners" in the bottom 4 bits of the return value
|
|
*/
|
|
static int partner_bits(struct sys_mem_pool_base *p, int level, int bn)
|
|
{
|
|
u32_t *word;
|
|
int bit = get_bit_ptr(p, level, bn, &word);
|
|
|
|
return (*word >> (4*(bit / 4))) & 0xf;
|
|
}
|
|
|
|
static size_t buf_size(struct sys_mem_pool_base *p)
|
|
{
|
|
return p->n_max * p->max_sz;
|
|
}
|
|
|
|
static bool block_fits(struct sys_mem_pool_base *p, void *block, size_t bsz)
|
|
{
|
|
return ((u8_t *)block + bsz - 1 - (u8_t *)p->buf) < buf_size(p);
|
|
}
|
|
|
|
void _sys_mem_pool_base_init(struct sys_mem_pool_base *p)
|
|
{
|
|
int i;
|
|
size_t buflen = p->n_max * p->max_sz, sz = p->max_sz;
|
|
u32_t *bits = (u32_t *)((u8_t *)p->buf + buflen);
|
|
|
|
p->max_inline_level = -1;
|
|
|
|
for (i = 0; i < p->n_levels; i++) {
|
|
int nblocks = buflen / sz;
|
|
|
|
sys_dlist_init(&p->levels[i].free_list);
|
|
|
|
if (nblocks < 32) {
|
|
p->max_inline_level = i;
|
|
} else {
|
|
p->levels[i].bits_p = bits;
|
|
bits += (nblocks + 31)/32;
|
|
}
|
|
|
|
sz = _ALIGN4(sz / 4);
|
|
}
|
|
|
|
for (i = 0; i < p->n_max; i++) {
|
|
void *block = block_ptr(p, p->max_sz, i);
|
|
|
|
sys_dlist_append(&p->levels[0].free_list, block);
|
|
set_free_bit(p, 0, i);
|
|
}
|
|
}
|
|
|
|
/* A note on synchronization:
|
|
*
|
|
* For k_mem_pools which are interrupt safe, all manipulation of the actual
|
|
* pool data happens in one of alloc_block()/free_block() or break_block().
|
|
* All of these transition between a state where the caller "holds" a block
|
|
* pointer that is marked used in the store and one where she doesn't (or else
|
|
* they will fail, e.g. if there isn't a free block). So that is the basic
|
|
* operation that needs synchronization, which we can do piecewise as needed in
|
|
* small one-block chunks to preserve latency. At most (in free_block) a
|
|
* single locked operation consists of four bit sets and dlist removals. If the
|
|
* overall allocation operation fails, we just free the block we have (putting
|
|
* a block back into the list cannot fail) and return failure.
|
|
*
|
|
* For user mode compatible sys_mem_pool pools, a semaphore is used at the API
|
|
* level since using that does not introduce latency issues like locking
|
|
* interrupts does.
|
|
*/
|
|
|
|
static inline int pool_irq_lock(struct sys_mem_pool_base *p)
|
|
{
|
|
if (p->flags & SYS_MEM_POOL_KERNEL) {
|
|
return irq_lock();
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key)
|
|
{
|
|
if (p->flags & SYS_MEM_POOL_KERNEL) {
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz)
|
|
{
|
|
sys_dnode_t *block;
|
|
|
|
block = sys_dlist_get(&p->levels[l].free_list);
|
|
if (block != NULL) {
|
|
clear_free_bit(p, l, block_num(p, block, lsz));
|
|
}
|
|
return block;
|
|
}
|
|
|
|
/* Called with lock held */
|
|
static unsigned int bfree_recombine(struct sys_mem_pool_base *p, int level,
|
|
size_t *lsizes, int bn, unsigned int key)
|
|
{
|
|
int i, lsz = lsizes[level];
|
|
void *block = block_ptr(p, lsz, bn);
|
|
|
|
__ASSERT(block_fits(p, block, lsz), "");
|
|
|
|
/* Put it back */
|
|
set_free_bit(p, level, bn);
|
|
sys_dlist_append(&p->levels[level].free_list, block);
|
|
|
|
/* Relax the lock (might result in it being taken, which is OK!) */
|
|
pool_irq_unlock(p, key);
|
|
key = pool_irq_lock(p);
|
|
|
|
/* Check if we can recombine its superblock, and repeat */
|
|
if (level == 0 || partner_bits(p, level, bn) != 0xf) {
|
|
return key;
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int b = (bn & ~3) + i;
|
|
|
|
if (block_fits(p, block_ptr(p, lsz, b), lsz)) {
|
|
clear_free_bit(p, level, b);
|
|
sys_dlist_remove(block_ptr(p, lsz, b));
|
|
}
|
|
}
|
|
|
|
/* Free the larger block (tail recursion!) */
|
|
return bfree_recombine(p, level - 1, lsizes, bn / 4, key);
|
|
}
|
|
|
|
static void block_free(struct sys_mem_pool_base *p, int level,
|
|
size_t *lsizes, int bn)
|
|
{
|
|
unsigned int key = pool_irq_lock(p);
|
|
|
|
key = bfree_recombine(p, level, lsizes, bn, key);
|
|
pool_irq_unlock(p, key);
|
|
}
|
|
|
|
/* Takes a block of a given level, splits it into four blocks of the
|
|
* next smaller level, puts three into the free list as in
|
|
* block_free() but without the need to check adjacent bits or
|
|
* recombine, and returns the remaining smaller block.
|
|
*/
|
|
static void *block_break(struct sys_mem_pool_base *p, void *block, int l,
|
|
size_t *lsizes)
|
|
{
|
|
int i, bn;
|
|
|
|
bn = block_num(p, block, lsizes[l]);
|
|
|
|
for (i = 1; i < 4; i++) {
|
|
int lbn = 4*bn + i;
|
|
int lsz = lsizes[l + 1];
|
|
void *block2 = (lsz * i) + (char *)block;
|
|
|
|
set_free_bit(p, l + 1, lbn);
|
|
if (block_fits(p, block2, lsz)) {
|
|
sys_dlist_append(&p->levels[l + 1].free_list, block2);
|
|
}
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
int _sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size,
|
|
u32_t *level_p, u32_t *block_p, void **data_p)
|
|
{
|
|
int i, from_l, alloc_l = -1, free_l = -1;
|
|
unsigned int key;
|
|
void *data = NULL;
|
|
size_t lsizes[p->n_levels];
|
|
|
|
/* Walk down through levels, finding the one from which we
|
|
* want to allocate and the smallest one with a free entry
|
|
* from which we can split an allocation if needed. Along the
|
|
* way, we populate an array of sizes for each level so we
|
|
* don't need to waste RAM storing it.
|
|
*/
|
|
lsizes[0] = _ALIGN4(p->max_sz);
|
|
for (i = 0; i < p->n_levels; i++) {
|
|
if (i > 0) {
|
|
lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
|
|
}
|
|
|
|
if (lsizes[i] < size) {
|
|
break;
|
|
}
|
|
|
|
alloc_l = i;
|
|
if (!level_empty(p, i)) {
|
|
free_l = i;
|
|
}
|
|
}
|
|
|
|
if (alloc_l < 0 || free_l < 0) {
|
|
*data_p = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Now walk back down the levels (i.e. toward bigger sizes)
|
|
* looking for an available block. Start at the smallest
|
|
* enclosing block found above (note that because that loop
|
|
* was done without synchronization, it may no longer be
|
|
* available!) as a useful optimization. Note that the
|
|
* removal of the block from the list and the re-addition of
|
|
* its the three unused children needs to be performed
|
|
* atomically, otherwise we open up a situation where we can
|
|
* "steal" the top level block of the whole heap, causing a
|
|
* spurious -ENOMEM.
|
|
*/
|
|
key = pool_irq_lock(p);
|
|
for (i = free_l; i >= 0; i--) {
|
|
data = block_alloc(p, i, lsizes[i]);
|
|
|
|
/* Found one. Iteratively break it down to the size
|
|
* we need. Note that we relax the lock to allow a
|
|
* pending interrupt to fire so we don't hurt latency
|
|
* by locking the full loop.
|
|
*/
|
|
if (data != NULL) {
|
|
for (from_l = i; from_l < alloc_l; from_l++) {
|
|
data = block_break(p, data, from_l, lsizes);
|
|
pool_irq_unlock(p, key);
|
|
key = pool_irq_lock(p);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
pool_irq_unlock(p, key);
|
|
|
|
*level_p = alloc_l;
|
|
*block_p = block_num(p, data, lsizes[alloc_l]);
|
|
*data_p = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void _sys_mem_pool_block_free(struct sys_mem_pool_base *p, u32_t level,
|
|
u32_t block)
|
|
{
|
|
size_t lsizes[p->n_levels];
|
|
int i;
|
|
|
|
/* As in _sys_mem_pool_block_alloc(), we build a table of level sizes
|
|
* to avoid having to store it in precious RAM bytes.
|
|
* Overhead here is somewhat higher because block_free()
|
|
* doesn't inherently need to traverse all the larger
|
|
* sublevels.
|
|
*/
|
|
lsizes[0] = _ALIGN4(p->max_sz);
|
|
for (i = 1; i <= level; i++) {
|
|
lsizes[i] = _ALIGN4(lsizes[i-1] / 4);
|
|
}
|
|
|
|
block_free(p, level, lsizes, block);
|
|
}
|
|
|
|
/*
|
|
* Functions specific to user-mode blocks
|
|
*/
|
|
|
|
void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size)
|
|
{
|
|
struct sys_mem_pool_block *blk;
|
|
u32_t level, block;
|
|
char *ret;
|
|
|
|
k_mutex_lock(p->mutex, K_FOREVER);
|
|
|
|
size += sizeof(struct sys_mem_pool_block);
|
|
if (_sys_mem_pool_block_alloc(&p->base, size, &level, &block,
|
|
(void **)&ret)) {
|
|
ret = NULL;
|
|
goto out;
|
|
}
|
|
|
|
blk = (struct sys_mem_pool_block *)ret;
|
|
blk->level = level;
|
|
blk->block = block;
|
|
blk->pool = p;
|
|
ret += sizeof(*blk);
|
|
out:
|
|
k_mutex_unlock(p->mutex);
|
|
return ret;
|
|
}
|
|
|
|
void sys_mem_pool_free(void *ptr)
|
|
{
|
|
struct sys_mem_pool_block *blk;
|
|
struct sys_mem_pool *p;
|
|
|
|
if (ptr == NULL) {
|
|
return;
|
|
}
|
|
|
|
blk = (struct sys_mem_pool_block *)((char *)ptr - sizeof(*blk));
|
|
p = blk->pool;
|
|
|
|
k_mutex_lock(p->mutex, K_FOREVER);
|
|
_sys_mem_pool_block_free(&p->base, blk->level, blk->block);
|
|
k_mutex_unlock(p->mutex);
|
|
}
|
|
|