zephyr/drivers/i2c/i2c_mcux_flexcomm.c

420 lines
10 KiB
C

/*
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright (c) 2019, 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_i2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_i2c.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(mcux_flexcomm);
#include "i2c-priv.h"
#define I2C_TRANSFER_TIMEOUT_MSEC \
COND_CODE_0(CONFIG_I2C_NXP_TRANSFER_TIMEOUT, (K_FOREVER), \
(K_MSEC(CONFIG_I2C_NXP_TRANSFER_TIMEOUT)))
struct mcux_flexcomm_config {
I2C_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t bitrate;
const struct pinctrl_dev_config *pincfg;
};
struct mcux_flexcomm_data {
i2c_master_handle_t handle;
struct k_sem device_sync_sem;
struct k_sem lock;
status_t callback_status;
#ifdef CONFIG_I2C_TARGET
i2c_slave_handle_t target_handle;
struct i2c_target_config *target_cfg;
bool target_attached;
bool first_read;
bool first_write;
bool is_write;
#endif
};
static int mcux_flexcomm_configure(const struct device *dev,
uint32_t dev_config_raw)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
uint32_t clock_freq;
uint32_t baudrate;
if (!(I2C_MODE_CONTROLLER & dev_config_raw)) {
return -EINVAL;
}
if (I2C_ADDR_10_BITS & dev_config_raw) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config_raw)) {
case I2C_SPEED_STANDARD:
baudrate = KHZ(100);
break;
case I2C_SPEED_FAST:
baudrate = KHZ(400);
break;
case I2C_SPEED_FAST_PLUS:
baudrate = MHZ(1);
break;
default:
return -EINVAL;
}
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
k_sem_take(&data->lock, K_FOREVER);
I2C_MasterSetBaudRate(base, baudrate, clock_freq);
k_sem_give(&data->lock);
return 0;
}
static void mcux_flexcomm_master_transfer_callback(I2C_Type *base,
i2c_master_handle_t *handle,
status_t status,
void *userData)
{
struct mcux_flexcomm_data *data = userData;
ARG_UNUSED(handle);
ARG_UNUSED(base);
data->callback_status = status;
k_sem_give(&data->device_sync_sem);
}
static uint32_t mcux_flexcomm_convert_flags(int msg_flags)
{
uint32_t flags = 0U;
if (!(msg_flags & I2C_MSG_STOP)) {
flags |= kI2C_TransferNoStopFlag;
}
if (msg_flags & I2C_MSG_RESTART) {
flags |= kI2C_TransferRepeatedStartFlag;
}
return flags;
}
static int mcux_flexcomm_transfer(const struct device *dev,
struct i2c_msg *msgs,
uint8_t num_msgs, uint16_t addr)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
i2c_master_transfer_t transfer;
status_t status;
int ret = 0;
k_sem_take(&data->lock, K_FOREVER);
/* Iterate over all the messages */
for (int i = 0; i < num_msgs; i++) {
if (I2C_MSG_ADDR_10_BITS & msgs->flags) {
ret = -ENOTSUP;
break;
}
/* Initialize the transfer descriptor */
transfer.flags = mcux_flexcomm_convert_flags(msgs->flags);
/* Prevent the controller to send a start condition between
* messages, except if explicitly requested.
*/
if (i != 0 && !(msgs->flags & I2C_MSG_RESTART)) {
transfer.flags |= kI2C_TransferNoStartFlag;
}
transfer.slaveAddress = addr;
transfer.direction = (msgs->flags & I2C_MSG_READ)
? kI2C_Read : kI2C_Write;
transfer.subaddress = 0;
transfer.subaddressSize = 0;
transfer.data = msgs->buf;
transfer.dataSize = msgs->len;
/* Start the transfer */
status = I2C_MasterTransferNonBlocking(base,
&data->handle, &transfer);
/* Return an error if the transfer didn't start successfully
* e.g., if the bus was busy
*/
if (status != kStatus_Success) {
I2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
break;
}
/* Wait for the transfer to complete */
k_sem_take(&data->device_sync_sem, I2C_TRANSFER_TIMEOUT_MSEC);
/* Return an error if the transfer didn't complete
* successfully. e.g., nak, timeout, lost arbitration
*/
if (data->callback_status != kStatus_Success) {
I2C_MasterTransferAbort(base, &data->handle);
ret = -EIO;
break;
}
/* Move to the next message */
msgs++;
}
k_sem_give(&data->lock);
return ret;
}
#if defined(CONFIG_I2C_TARGET)
static void i2c_target_transfer_callback(I2C_Type *base,
volatile i2c_slave_transfer_t *transfer, void *userData)
{
struct mcux_flexcomm_data *data = userData;
const struct i2c_target_callbacks *target_cb = data->target_cfg->callbacks;
static uint8_t rxVal, txVal;
ARG_UNUSED(base);
switch (transfer->event) {
case kI2C_SlaveTransmitEvent:
/* request to provide data to transmit */
if (data->first_read && target_cb->read_requested) {
data->first_read = false;
target_cb->read_requested(data->target_cfg, &txVal);
} else if (target_cb->read_processed) {
target_cb->read_processed(data->target_cfg, &txVal);
}
transfer->txData = &txVal;
transfer->txSize = 1;
break;
case kI2C_SlaveReceiveEvent:
/* request to provide a buffer in which to place received data */
if (data->first_write && target_cb->write_requested) {
target_cb->write_requested(data->target_cfg);
data->first_write = false;
}
transfer->rxData = &rxVal;
transfer->rxSize = 1;
data->is_write = true;
break;
case kI2C_SlaveCompletionEvent:
/* called after every transferred byte */
if (data->is_write && target_cb->write_received) {
target_cb->write_received(data->target_cfg, rxVal);
data->is_write = false;
}
break;
case kI2C_SlaveDeselectedEvent:
if (target_cb->stop) {
target_cb->stop(data->target_cfg);
}
data->first_read = true;
data->first_write = true;
break;
default:
LOG_INF("Unhandled event: %d", transfer->event);
break;
}
}
int mcux_flexcomm_target_register(const struct device *dev,
struct i2c_target_config *target_config)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
uint32_t clock_freq;
i2c_slave_config_t i2c_cfg;
I2C_MasterDeinit(base);
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
if (!target_config) {
return -EINVAL;
}
if (data->target_attached) {
return -EBUSY;
}
data->target_cfg = target_config;
data->target_attached = true;
data->first_read = true;
data->first_write = true;
I2C_SlaveGetDefaultConfig(&i2c_cfg);
i2c_cfg.address0.address = target_config->address;
I2C_SlaveInit(base, &i2c_cfg, clock_freq);
I2C_SlaveTransferCreateHandle(base, &data->target_handle,
i2c_target_transfer_callback, data);
I2C_SlaveTransferNonBlocking(base, &data->target_handle,
kI2C_SlaveCompletionEvent | kI2C_SlaveTransmitEvent |
kI2C_SlaveReceiveEvent | kI2C_SlaveDeselectedEvent);
return 0;
}
int mcux_flexcomm_target_unregister(const struct device *dev,
struct i2c_target_config *target_config)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
if (!data->target_attached) {
return -EINVAL;
}
data->target_cfg = NULL;
data->target_attached = false;
I2C_SlaveDeinit(base);
return 0;
}
#endif
static void mcux_flexcomm_isr(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
#if defined(CONFIG_I2C_TARGET)
if (data->target_attached) {
I2C_SlaveTransferHandleIRQ(base, &data->target_handle);
return;
}
#endif
I2C_MasterTransferHandleIRQ(base, &data->handle);
}
static int mcux_flexcomm_init(const struct device *dev)
{
const struct mcux_flexcomm_config *config = dev->config;
struct mcux_flexcomm_data *data = dev->data;
I2C_Type *base = config->base;
uint32_t clock_freq, bitrate_cfg;
i2c_master_config_t master_config;
int error;
error = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (error) {
return error;
}
k_sem_init(&data->lock, 1, 1);
k_sem_init(&data->device_sync_sem, 0, K_SEM_MAX_LIMIT);
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
I2C_MasterGetDefaultConfig(&master_config);
I2C_MasterInit(base, &master_config, clock_freq);
I2C_MasterTransferCreateHandle(base, &data->handle,
mcux_flexcomm_master_transfer_callback,
data);
bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
error = mcux_flexcomm_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (error) {
return error;
}
config->irq_config_func(dev);
return 0;
}
static const struct i2c_driver_api mcux_flexcomm_driver_api = {
.configure = mcux_flexcomm_configure,
.transfer = mcux_flexcomm_transfer,
#if defined(CONFIG_I2C_TARGET)
.target_register = mcux_flexcomm_target_register,
.target_unregister = mcux_flexcomm_target_unregister,
#endif
};
#define I2C_MCUX_FLEXCOMM_DEVICE(id) \
PINCTRL_DT_INST_DEFINE(id); \
static void mcux_flexcomm_config_func_##id(const struct device *dev); \
static const struct mcux_flexcomm_config mcux_flexcomm_config_##id = { \
.base = (I2C_Type *) DT_INST_REG_ADDR(id), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
.irq_config_func = mcux_flexcomm_config_func_##id, \
.bitrate = DT_INST_PROP(id, clock_frequency), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
}; \
static struct mcux_flexcomm_data mcux_flexcomm_data_##id; \
I2C_DEVICE_DT_INST_DEFINE(id, \
mcux_flexcomm_init, \
NULL, \
&mcux_flexcomm_data_##id, \
&mcux_flexcomm_config_##id, \
POST_KERNEL, \
CONFIG_I2C_INIT_PRIORITY, \
&mcux_flexcomm_driver_api); \
static void mcux_flexcomm_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
mcux_flexcomm_isr, \
DEVICE_DT_INST_GET(id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
} \
DT_INST_FOREACH_STATUS_OKAY(I2C_MCUX_FLEXCOMM_DEVICE)