zephyr/drivers/espi/espi_it8xxx2.c

1942 lines
58 KiB
C

/*
* Copyright (c) 2021 ITE Corporation. All Rights Reserved.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ite_it8xxx2_espi
#include <assert.h>
#include <zephyr/drivers/espi.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/interrupt_controller/wuc_ite_it8xxx2.h>
#include <zephyr/kernel.h>
#include <soc.h>
#include <soc_dt.h>
#include "soc_espi.h"
#include "espi_utils.h"
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(espi, CONFIG_ESPI_LOG_LEVEL);
#define ESPI_IT8XXX2_GET_GCTRL_BASE \
((struct gctrl_it8xxx2_regs *)DT_REG_ADDR(DT_NODELABEL(gctrl)))
#define IT8XXX2_ESPI_IRQ DT_INST_IRQ_BY_IDX(0, 0, irq)
#define IT8XXX2_ESPI_VW_IRQ DT_INST_IRQ_BY_IDX(0, 1, irq)
#define IT8XXX2_KBC_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 2, irq)
#define IT8XXX2_KBC_OBE_IRQ DT_INST_IRQ_BY_IDX(0, 3, irq)
#define IT8XXX2_PMC1_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 4, irq)
#define IT8XXX2_PORT_80_IRQ DT_INST_IRQ_BY_IDX(0, 5, irq)
#define IT8XXX2_PMC2_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 6, irq)
#define IT8XXX2_TRANS_IRQ DT_INST_IRQ_BY_IDX(0, 7, irq)
/* General Capabilities and Configuration 1 */
#define IT8XXX2_ESPI_MAX_FREQ_MASK GENMASK(2, 0)
#define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_20 0
#define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_25 1
#define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_33 2
#define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_50 3
#define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_66 4
#define IT8XXX2_ESPI_PC_READY_MASK BIT(1)
#define IT8XXX2_ESPI_VW_READY_MASK BIT(1)
#define IT8XXX2_ESPI_OOB_READY_MASK BIT(1)
#define IT8XXX2_ESPI_FC_READY_MASK BIT(1)
#define IT8XXX2_ESPI_INTERRUPT_ENABLE BIT(7)
#define IT8XXX2_ESPI_TO_WUC_ENABLE BIT(4)
#define IT8XXX2_ESPI_VW_INTERRUPT_ENABLE BIT(7)
#define IT8XXX2_ESPI_INTERRUPT_PUT_PC BIT(7)
/*
* VWCTRL2 register:
* bit4 = 1b: Refers to ESPI_RESET# for PLTRST#.
*/
#define IT8XXX2_ESPI_VW_RESET_PLTRST BIT(4)
#define IT8XXX2_ESPI_UPSTREAM_ENABLE BIT(7)
#define IT8XXX2_ESPI_UPSTREAM_GO BIT(6)
#define IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE BIT(5)
#define IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE BIT(2)
#define IT8XXX2_ESPI_UPSTREAM_DONE BIT(1)
#define IT8XXX2_ESPI_UPSTREAM_BUSY BIT(0)
#define IT8XXX2_ESPI_CYCLE_TYPE_OOB 0x07
#define IT8XXX2_ESPI_PUT_OOB_STATUS BIT(7)
#define IT8XXX2_ESPI_PUT_OOB_INTERRUPT_ENABLE BIT(7)
#define IT8XXX2_ESPI_PUT_OOB_LEN_MASK GENMASK(6, 0)
#define IT8XXX2_ESPI_INPUT_PAD_GATING BIT(6)
#define IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE 64
#define IT8XXX2_ESPI_PUT_FLASH_TAG_MASK GENMASK(7, 4)
#define IT8XXX2_ESPI_PUT_FLASH_LEN_MASK GENMASK(6, 0)
struct espi_it8xxx2_wuc {
/* WUC control device structure */
const struct device *wucs;
/* WUC pin mask */
uint8_t mask;
};
struct espi_it8xxx2_config {
uintptr_t base_espi_slave;
uintptr_t base_espi_vw;
uintptr_t base_espi_queue1;
uintptr_t base_espi_queue0;
uintptr_t base_ec2i;
uintptr_t base_kbc;
uintptr_t base_pmc;
uintptr_t base_smfi;
const struct espi_it8xxx2_wuc wuc;
};
struct espi_it8xxx2_data {
sys_slist_t callbacks;
#ifdef CONFIG_ESPI_OOB_CHANNEL
struct k_sem oob_upstream_go;
#endif
#ifdef CONFIG_ESPI_FLASH_CHANNEL
struct k_sem flash_upstream_go;
uint8_t put_flash_cycle_type;
uint8_t put_flash_tag;
uint8_t put_flash_len;
uint8_t flash_buf[IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE];
#endif
};
struct vw_channel_t {
uint8_t vw_index; /* VW index of signal */
uint8_t level_mask; /* level bit of signal */
uint8_t valid_mask; /* valid bit of signal */
};
struct vwidx_isr_t {
void (*vwidx_isr)(const struct device *dev, uint8_t update_flag);
uint8_t vw_index;
};
enum espi_ch_enable_isr_type {
DEASSERTED_FLAG = 0,
ASSERTED_FLAG = 1,
};
struct espi_isr_t {
void (*espi_isr)(const struct device *dev, bool enable);
enum espi_ch_enable_isr_type isr_type;
};
struct espi_vw_signal_t {
enum espi_vwire_signal signal;
void (*vw_signal_isr)(const struct device *dev);
};
/* EC2I bridge and PNPCFG devices */
static const struct ec2i_t kbc_settings[] = {
/* Select logical device 06h(keyboard) */
{HOST_INDEX_LDN, LDN_KBC_KEYBOARD},
/* Set IRQ=01h for logical device */
{HOST_INDEX_IRQNUMX, 0x01},
/* Configure IRQTP for KBC. */
/*
* Interrupt request type select (IRQTP) for KBC.
* bit 1, 0: IRQ request is buffered and applied to SERIRQ
* 1: IRQ request is inverted before being applied to SERIRQ
* bit 0, 0: Edge triggered mode
* 1: Level triggered mode
*
* This interrupt configuration should the same on both host and EC side
*/
{HOST_INDEX_IRQTP, 0x02},
/* Enable logical device */
{HOST_INDEX_LDA, 0x01},
#ifdef CONFIG_ESPI_IT8XXX2_PNPCFG_DEVICE_KBC_MOUSE
/* Select logical device 05h(mouse) */
{HOST_INDEX_LDN, LDN_KBC_MOUSE},
/* Set IRQ=0Ch for logical device */
{HOST_INDEX_IRQNUMX, 0x0C},
/* Enable logical device */
{HOST_INDEX_LDA, 0x01},
#endif
};
static const struct ec2i_t pmc1_settings[] = {
/* Select logical device 11h(PM1 ACPI) */
{HOST_INDEX_LDN, LDN_PMC1},
/* Set IRQ=00h for logical device */
{HOST_INDEX_IRQNUMX, 0x00},
/* Enable logical device */
{HOST_INDEX_LDA, 0x01},
};
#ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD
#define IT8XXX2_ESPI_HC_DATA_PORT_MSB \
((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM >> 8) & 0xff)
#define IT8XXX2_ESPI_HC_DATA_PORT_LSB \
(CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM & 0xff)
#define IT8XXX2_ESPI_HC_CMD_PORT_MSB \
(((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM + 4) >> 8) & 0xff)
#define IT8XXX2_ESPI_HC_CMD_PORT_LSB \
((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM + 4) & 0xff)
static const struct ec2i_t pmc2_settings[] = {
/* Select logical device 12h(PM2 host command) */
{HOST_INDEX_LDN, LDN_PMC2},
/* I/O Port Base Address (data/command ports) */
{HOST_INDEX_IOBAD0_MSB, IT8XXX2_ESPI_HC_DATA_PORT_MSB},
{HOST_INDEX_IOBAD0_LSB, IT8XXX2_ESPI_HC_DATA_PORT_LSB},
{HOST_INDEX_IOBAD1_MSB, IT8XXX2_ESPI_HC_CMD_PORT_MSB},
{HOST_INDEX_IOBAD1_LSB, IT8XXX2_ESPI_HC_CMD_PORT_LSB},
/* Set IRQ=00h for logical device */
{HOST_INDEX_IRQNUMX, 0x00},
/* Enable logical device */
{HOST_INDEX_LDA, 0x01},
};
#endif
#if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \
defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION)
/*
* Host to RAM (H2RAM) memory mapping.
* This feature allows host access EC's memory directly by eSPI I/O cycles.
* Mapping range is 4K bytes and base address is adjustable.
* Eg. the I/O cycle 800h~8ffh from host can be mapped to x800h~x8ffh.
* Linker script will make the pool 4K aligned.
*/
#define IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX 0x1000
#define IT8XXX2_ESPI_H2RAM_OFFSET_MASK GENMASK(5, 0)
#if defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION)
#define H2RAM_ACPI_SHM_MAX ((CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE) + \
(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM))
#if (H2RAM_ACPI_SHM_MAX > IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX)
#error "ACPI shared memory region out of h2ram"
#endif
#endif /* CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION */
#if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD)
#define H2RAM_EC_HOST_CMD_MAX ((CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE) + \
(CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM))
#if (H2RAM_EC_HOST_CMD_MAX > IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX)
#error "EC host command parameters out of h2ram"
#endif
#endif /* CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD */
#if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) && \
defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION)
#if (MIN(H2RAM_ACPI_SHM_MAX, H2RAM_EC_HOST_CMD_MAX) > \
MAX(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM, \
CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM))
#error "ACPI and HC sections of h2ram overlap"
#endif
#endif
static uint8_t h2ram_pool[MAX(H2RAM_ACPI_SHM_MAX, H2RAM_EC_HOST_CMD_MAX)]
__attribute__((section(".h2ram_pool")));
#define H2RAM_WINDOW_SIZE(ram_size) ((find_msb_set((ram_size) / 16) - 1) & 0x7)
static const struct ec2i_t smfi_settings[] = {
/* Select logical device 0Fh(SMFI) */
{HOST_INDEX_LDN, LDN_SMFI},
/* Internal RAM base address on eSPI I/O space */
{HOST_INDEX_DSLDC6, 0x00},
/* Enable H2RAM eSPI I/O cycle */
{HOST_INDEX_DSLDC7, 0x01},
/* Enable logical device */
{HOST_INDEX_LDA, 0x01},
};
static void smfi_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct smfi_it8xxx2_regs *const smfi_reg =
(struct smfi_it8xxx2_regs *)config->base_smfi;
struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE;
uint8_t h2ram_offset;
/* Set the host to RAM cycle address offset */
h2ram_offset = ((uint32_t)h2ram_pool & 0xffff) /
IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX;
gctrl->GCTRL_H2ROFSR =
(gctrl->GCTRL_H2ROFSR & ~IT8XXX2_ESPI_H2RAM_OFFSET_MASK) |
h2ram_offset;
#ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD
memset(&h2ram_pool[CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM], 0,
CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE);
/* Set host RAM window 0 base address */
smfi_reg->SMFI_HRAMW0BA =
(CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM >> 4) & 0xff;
/* Set host RAM window 0 size. (allow R/W) */
smfi_reg->SMFI_HRAMW0AAS =
H2RAM_WINDOW_SIZE(CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE);
/* Enable window 0, H2RAM through IO cycle */
smfi_reg->SMFI_HRAMWC |= (SMFI_H2RAMPS | SMFI_H2RAMW0E);
#endif
#ifdef CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION
memset(&h2ram_pool[CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM], 0,
CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE);
/* Set host RAM window 1 base address */
smfi_reg->SMFI_HRAMW1BA =
(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM >> 4) & 0xff;
/* Set host RAM window 1 size. (read-only) */
smfi_reg->SMFI_HRAMW1AAS =
H2RAM_WINDOW_SIZE(CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE) |
SMFI_HRAMWXWPE_ALL;
/* Enable window 1, H2RAM through IO cycle */
smfi_reg->SMFI_HRAMWC |= (SMFI_H2RAMPS | SMFI_H2RAMW1E);
#endif
}
#endif /* CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD ||
* CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION
*/
static void ec2i_it8xxx2_wait_status_cleared(const struct device *dev,
uint8_t mask)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i;
while (ec2i->IBCTL & mask) {
;
}
}
static void ec2i_it8xxx2_write_pnpcfg(const struct device *dev,
enum ec2i_access sel, uint8_t data)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i;
/* bit0: EC to I-Bus access enabled. */
ec2i->IBCTL |= EC2I_IBCTL_CSAE;
/*
* Wait that both CRIB and CWIB bits in IBCTL register
* are cleared.
*/
ec2i_it8xxx2_wait_status_cleared(dev, EC2I_IBCTL_CRWIB);
/* Enable EC access to the PNPCFG registers */
ec2i->IBMAE |= EC2I_IBMAE_CFGAE;
/* Set indirect host I/O offset. */
ec2i->IHIOA = sel;
/* Write the data to IHD register */
ec2i->IHD = data;
/* Wait the CWIB bit in IBCTL cleared. */
ec2i_it8xxx2_wait_status_cleared(dev, EC2I_IBCTL_CWIB);
/* Disable EC access to the PNPCFG registers. */
ec2i->IBMAE &= ~EC2I_IBMAE_CFGAE;
/* Disable EC to I-Bus access. */
ec2i->IBCTL &= ~EC2I_IBCTL_CSAE;
}
static void ec2i_it8xxx2_write(const struct device *dev,
enum host_pnpcfg_index index, uint8_t data)
{
/* Set index */
ec2i_it8xxx2_write_pnpcfg(dev, EC2I_ACCESS_INDEX, index);
/* Set data */
ec2i_it8xxx2_write_pnpcfg(dev, EC2I_ACCESS_DATA, data);
}
static void pnpcfg_it8xxx2_configure(const struct device *dev,
const struct ec2i_t *settings,
size_t entries)
{
for (size_t i = 0; i < entries; i++) {
ec2i_it8xxx2_write(dev, settings[i].index_port,
settings[i].data_port);
}
}
#define PNPCFG(_s) \
pnpcfg_it8xxx2_configure(dev, _s##_settings, ARRAY_SIZE(_s##_settings))
static void pnpcfg_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i;
struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE;
/* The register pair to access PNPCFG is 004Eh and 004Fh */
gctrl->GCTRL_BADRSEL = 0x1;
/* Host access is disabled */
ec2i->LSIOHA |= 0x3;
/* configure pnpcfg devices */
if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_8042_KBC)) {
PNPCFG(kbc);
}
if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_HOST_IO)) {
PNPCFG(pmc1);
}
#ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD
PNPCFG(pmc2);
#endif
#if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \
defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION)
PNPCFG(smfi);
#endif
}
/* KBC (port 60h/64h) */
#ifdef CONFIG_ESPI_PERIPHERAL_8042_KBC
static void kbc_it8xxx2_ibf_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc;
struct espi_event evt = {
ESPI_BUS_PERIPHERAL_NOTIFICATION,
ESPI_PERIPHERAL_8042_KBC,
ESPI_PERIPHERAL_NODATA
};
struct espi_evt_data_kbc *kbc_evt =
(struct espi_evt_data_kbc *)&evt.evt_data;
/* KBC Input Buffer Full event */
kbc_evt->evt = HOST_KBC_EVT_IBF;
/*
* Indicates if the host sent a command or data.
* 0 = data
* 1 = Command.
*/
kbc_evt->type = !!(kbc_reg->KBHISR & KBC_KBHISR_A2_ADDR);
/* The data in KBC Input Buffer */
kbc_evt->data = kbc_reg->KBHIDIR;
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void kbc_it8xxx2_obe_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc;
struct espi_event evt = {
ESPI_BUS_PERIPHERAL_NOTIFICATION,
ESPI_PERIPHERAL_8042_KBC,
ESPI_PERIPHERAL_NODATA
};
struct espi_evt_data_kbc *kbc_evt =
(struct espi_evt_data_kbc *)&evt.evt_data;
/* Disable KBC OBE interrupt first */
kbc_reg->KBHICR &= ~KBC_KBHICR_OBECIE;
/* Notify application that host already read out data. */
kbc_evt->evt = HOST_KBC_EVT_OBE;
kbc_evt->data = 0;
kbc_evt->type = 0;
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void kbc_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc;
/* Disable KBC serirq IRQ */
kbc_reg->KBIRQR = 0;
/*
* bit3: Input Buffer Full CPU Interrupt Enable.
* bit1: Enable the interrupt to mouse driver in the host processor via
* SERIRQ when the output buffer is full.
* bit0: Enable the interrupt to keyboard driver in the host processor
* via SERIRQ when the output buffer is full
*/
kbc_reg->KBHICR |=
(KBC_KBHICR_IBFCIE | KBC_KBHICR_OBFKIE | KBC_KBHICR_OBFMIE);
/* Input Buffer Full CPU Interrupt Enable. */
IRQ_CONNECT(IT8XXX2_KBC_IBF_IRQ, 0, kbc_it8xxx2_ibf_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_KBC_IBF_IRQ);
/* Output Buffer Empty CPU Interrupt Enable */
IRQ_CONNECT(IT8XXX2_KBC_OBE_IRQ, 0, kbc_it8xxx2_obe_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_KBC_OBE_IRQ);
}
#endif
/* PMC 1 (APCI port 62h/66h) */
#ifdef CONFIG_ESPI_PERIPHERAL_HOST_IO
static void pmc1_it8xxx2_ibf_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc;
struct espi_event evt = {
ESPI_BUS_PERIPHERAL_NOTIFICATION,
ESPI_PERIPHERAL_HOST_IO,
ESPI_PERIPHERAL_NODATA
};
struct espi_evt_data_acpi *acpi_evt =
(struct espi_evt_data_acpi *)&evt.evt_data;
/*
* Indicates if the host sent a command or data.
* 0 = data
* 1 = Command.
*/
acpi_evt->type = !!(pmc_reg->PM1STS & PMC_PM1STS_A2_ADDR);
/* Set processing flag before reading command byte */
pmc_reg->PM1STS |= PMC_PM1STS_GPF;
acpi_evt->data = pmc_reg->PM1DI;
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void pmc1_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc;
/* Enable pmc1 input buffer full interrupt */
pmc_reg->PM1CTL |= PMC_PM1CTL_IBFIE;
IRQ_CONNECT(IT8XXX2_PMC1_IBF_IRQ, 0, pmc1_it8xxx2_ibf_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_PMC1_IBF_IRQ);
}
#endif
/* Port 80 */
#ifdef CONFIG_ESPI_PERIPHERAL_DEBUG_PORT_80
static void port80_it8xxx2_isr(const struct device *dev)
{
struct espi_it8xxx2_data *const data = dev->data;
struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE;
struct espi_event evt = {
ESPI_BUS_PERIPHERAL_NOTIFICATION,
(ESPI_PERIPHERAL_INDEX_0 << 16) | ESPI_PERIPHERAL_DEBUG_PORT80,
ESPI_PERIPHERAL_NODATA
};
if (IS_ENABLED(CONFIG_ESPI_IT8XXX2_PORT_81_CYCLE)) {
evt.evt_data = gctrl->GCTRL_P80HDR | (gctrl->GCTRL_P81HDR << 8);
} else {
evt.evt_data = gctrl->GCTRL_P80HDR;
}
/* Write 1 to clear this bit */
gctrl->GCTRL_P80H81HSR |= BIT(0);
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void port80_it8xxx2_init(const struct device *dev)
{
ARG_UNUSED(dev);
struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE;
/* Accept Port 80h (and 81h) Cycle */
if (IS_ENABLED(CONFIG_ESPI_IT8XXX2_PORT_81_CYCLE)) {
gctrl->GCTRL_SPCTRL1 |=
(IT8XXX2_GCTRL_ACP80 | IT8XXX2_GCTRL_ACP81);
} else {
gctrl->GCTRL_SPCTRL1 |= IT8XXX2_GCTRL_ACP80;
}
IRQ_CONNECT(IT8XXX2_PORT_80_IRQ, 0, port80_it8xxx2_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_PORT_80_IRQ);
}
#endif
#ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD
/* PMC 2 (Host command port CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM) */
static void pmc2_it8xxx2_ibf_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc;
struct espi_event evt = {
ESPI_BUS_PERIPHERAL_NOTIFICATION,
ESPI_PERIPHERAL_EC_HOST_CMD,
ESPI_PERIPHERAL_NODATA
};
/* Set processing flag before reading command byte */
pmc_reg->PM2STS |= PMC_PM2STS_GPF;
evt.evt_data = pmc_reg->PM2DI;
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void pmc2_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc;
/* Dedicated interrupt for PMC2 */
pmc_reg->MBXCTRL |= PMC_MBXCTRL_DINT;
/* Enable pmc2 input buffer full interrupt */
pmc_reg->PM2CTL |= PMC_PM2CTL_IBFIE;
IRQ_CONNECT(IT8XXX2_PMC2_IBF_IRQ, 0, pmc2_it8xxx2_ibf_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_PMC2_IBF_IRQ);
}
#endif
/* eSPI api functions */
#define VW_CHAN(signal, index, level, valid) \
[signal] = {.vw_index = index, .level_mask = level, .valid_mask = valid}
/* VW signals used in eSPI */
static const struct vw_channel_t vw_channel_list[] = {
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S3, 0x02, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S4, 0x02, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S5, 0x02, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_OOB_RST_WARN, 0x03, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_PLTRST, 0x03, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_STAT, 0x03, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_NMIOUT, 0x07, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SMIOUT, 0x07, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_RST_WARN, 0x07, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_A, 0x41, BIT(3), BIT(7)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK, 0x41, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_WARN, 0x41, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_WLAN, 0x42, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_LAN, 0x42, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_C10, 0x47, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_DNX_WARN, 0x4a, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_PME, 0x04, BIT(3), BIT(7)),
VW_CHAN(ESPI_VWIRE_SIGNAL_WAKE, 0x04, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_OOB_RST_ACK, 0x04, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS, 0x05, BIT(3), BIT(7)),
VW_CHAN(ESPI_VWIRE_SIGNAL_ERR_NON_FATAL, 0x05, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_ERR_FATAL, 0x05, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE, 0x05, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_RST_ACK, 0x06, BIT(3), BIT(7)),
VW_CHAN(ESPI_VWIRE_SIGNAL_RST_CPU_INIT, 0x06, BIT(2), BIT(6)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SMI, 0x06, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SCI, 0x06, BIT(0), BIT(4)),
VW_CHAN(ESPI_VWIRE_SIGNAL_DNX_ACK, 0x40, BIT(1), BIT(5)),
VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_ACK, 0x40, BIT(0), BIT(4)),
};
static int espi_it8xxx2_configure(const struct device *dev,
struct espi_cfg *cfg)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
uint8_t capcfg1 = 0;
/* Set frequency */
switch (cfg->max_freq) {
case 20:
capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_20;
break;
case 25:
capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_25;
break;
case 33:
capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_33;
break;
case 50:
capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_50;
break;
case 66:
capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_66;
break;
default:
return -EINVAL;
}
slave_reg->GCAPCFG1 =
(slave_reg->GCAPCFG1 & ~IT8XXX2_ESPI_MAX_FREQ_MASK) | capcfg1;
/*
* Configure eSPI I/O mode. (Register read only)
* Supported I/O mode : single, dual and quad.
*/
/* Configure eSPI supported channels. (Register read only)
* Supported channels: peripheral, virtual wire, OOB, and flash access.
*/
return 0;
}
static bool espi_it8xxx2_channel_ready(const struct device *dev,
enum espi_channel ch)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
bool sts = false;
switch (ch) {
case ESPI_CHANNEL_PERIPHERAL:
sts = slave_reg->CH_PC_CAPCFG3 & IT8XXX2_ESPI_PC_READY_MASK;
break;
case ESPI_CHANNEL_VWIRE:
sts = slave_reg->CH_VW_CAPCFG3 & IT8XXX2_ESPI_VW_READY_MASK;
break;
case ESPI_CHANNEL_OOB:
sts = slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK;
break;
case ESPI_CHANNEL_FLASH:
sts = slave_reg->CH_FLASH_CAPCFG3 & IT8XXX2_ESPI_FC_READY_MASK;
break;
default:
break;
}
return sts;
}
static int espi_it8xxx2_send_vwire(const struct device *dev,
enum espi_vwire_signal signal, uint8_t level)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_vw_regs *const vw_reg =
(struct espi_vw_regs *)config->base_espi_vw;
uint8_t vw_index = vw_channel_list[signal].vw_index;
uint8_t level_mask = vw_channel_list[signal].level_mask;
uint8_t valid_mask = vw_channel_list[signal].valid_mask;
if (signal > ARRAY_SIZE(vw_channel_list)) {
return -EIO;
}
if (level) {
vw_reg->VW_INDEX[vw_index] |= level_mask;
} else {
vw_reg->VW_INDEX[vw_index] &= ~level_mask;
}
vw_reg->VW_INDEX[vw_index] |= valid_mask;
return 0;
}
static int espi_it8xxx2_receive_vwire(const struct device *dev,
enum espi_vwire_signal signal, uint8_t *level)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_vw_regs *const vw_reg =
(struct espi_vw_regs *)config->base_espi_vw;
uint8_t vw_index = vw_channel_list[signal].vw_index;
uint8_t level_mask = vw_channel_list[signal].level_mask;
uint8_t valid_mask = vw_channel_list[signal].valid_mask;
if (signal > ARRAY_SIZE(vw_channel_list)) {
return -EIO;
}
if (vw_reg->VW_INDEX[vw_index] & valid_mask) {
*level = !!(vw_reg->VW_INDEX[vw_index] & level_mask);
} else {
/* Not valid */
*level = 0;
}
return 0;
}
static int espi_it8xxx2_manage_callback(const struct device *dev,
struct espi_callback *callback, bool set)
{
struct espi_it8xxx2_data *const data = dev->data;
return espi_manage_callback(&data->callbacks, callback, set);
}
static int espi_it8xxx2_read_lpc_request(const struct device *dev,
enum lpc_peripheral_opcode op,
uint32_t *data)
{
const struct espi_it8xxx2_config *const config = dev->config;
if (op >= E8042_START_OPCODE && op <= E8042_MAX_OPCODE) {
struct kbc_regs *const kbc_reg =
(struct kbc_regs *)config->base_kbc;
switch (op) {
case E8042_OBF_HAS_CHAR:
/* EC has written data back to host. OBF is
* automatically cleared after host reads
* the data
*/
*data = !!(kbc_reg->KBHISR & KBC_KBHISR_OBF);
break;
case E8042_IBF_HAS_CHAR:
*data = !!(kbc_reg->KBHISR & KBC_KBHISR_IBF);
break;
case E8042_READ_KB_STS:
*data = kbc_reg->KBHISR;
break;
default:
return -EINVAL;
}
} else if (op >= EACPI_START_OPCODE && op <= EACPI_MAX_OPCODE) {
struct pmc_regs *const pmc_reg =
(struct pmc_regs *)config->base_pmc;
switch (op) {
case EACPI_OBF_HAS_CHAR:
/* EC has written data back to host. OBF is
* automatically cleared after host reads
* the data
*/
*data = !!(pmc_reg->PM1STS & PMC_PM1STS_OBF);
break;
case EACPI_IBF_HAS_CHAR:
*data = !!(pmc_reg->PM1STS & PMC_PM1STS_IBF);
break;
case EACPI_READ_STS:
*data = pmc_reg->PM1STS;
break;
#ifdef CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION
case EACPI_GET_SHARED_MEMORY:
*data = (uint32_t)&h2ram_pool[
CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM];
break;
#endif /* CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION */
default:
return -EINVAL;
}
}
#ifdef CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE
else if (op >= ECUSTOM_START_OPCODE && op <= ECUSTOM_MAX_OPCODE) {
switch (op) {
case ECUSTOM_HOST_CMD_GET_PARAM_MEMORY:
*data = (uint32_t)&h2ram_pool[
CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM];
break;
case ECUSTOM_HOST_CMD_GET_PARAM_MEMORY_SIZE:
*data = CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE;
break;
default:
return -EINVAL;
}
}
#endif /* CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE */
else {
return -ENOTSUP;
}
return 0;
}
static int espi_it8xxx2_write_lpc_request(const struct device *dev,
enum lpc_peripheral_opcode op,
uint32_t *data)
{
const struct espi_it8xxx2_config *const config = dev->config;
if (op >= E8042_START_OPCODE && op <= E8042_MAX_OPCODE) {
struct kbc_regs *const kbc_reg =
(struct kbc_regs *)config->base_kbc;
switch (op) {
case E8042_WRITE_KB_CHAR:
kbc_reg->KBHIKDOR = (*data & 0xff);
/*
* Enable OBE interrupt after putting data in
* data register.
*/
kbc_reg->KBHICR |= KBC_KBHICR_OBECIE;
break;
case E8042_WRITE_MB_CHAR:
kbc_reg->KBHIMDOR = (*data & 0xff);
/*
* Enable OBE interrupt after putting data in
* data register.
*/
kbc_reg->KBHICR |= KBC_KBHICR_OBECIE;
break;
case E8042_RESUME_IRQ:
/* Enable KBC IBF interrupt */
kbc_reg->KBHICR |= KBC_KBHICR_IBFCIE;
break;
case E8042_PAUSE_IRQ:
/* Disable KBC IBF interrupt */
kbc_reg->KBHICR &= ~KBC_KBHICR_IBFCIE;
break;
case E8042_CLEAR_OBF:
/*
* After enabling IBF/OBF clear mode, we have to make
* sure that IBF interrupt is not triggered before
* disabling the clear mode. Or the interrupt will keep
* triggering until the watchdog is reset.
*/
unsigned int key = irq_lock();
/*
* When IBFOBFCME is enabled, write 1 to COBF bit to
* clear KBC OBF.
*/
kbc_reg->KBHICR |= KBC_KBHICR_IBFOBFCME;
kbc_reg->KBHICR |= KBC_KBHICR_COBF;
kbc_reg->KBHICR &= ~KBC_KBHICR_COBF;
/* Disable clear mode */
kbc_reg->KBHICR &= ~KBC_KBHICR_IBFOBFCME;
irq_unlock(key);
break;
case E8042_SET_FLAG:
kbc_reg->KBHISR |= (*data & 0xff);
break;
case E8042_CLEAR_FLAG:
kbc_reg->KBHISR &= ~(*data & 0xff);
break;
default:
return -EINVAL;
}
} else if (op >= EACPI_START_OPCODE && op <= EACPI_MAX_OPCODE) {
struct pmc_regs *const pmc_reg =
(struct pmc_regs *)config->base_pmc;
switch (op) {
case EACPI_WRITE_CHAR:
pmc_reg->PM1DO = (*data & 0xff);
break;
case EACPI_WRITE_STS:
pmc_reg->PM1STS = (*data & 0xff);
break;
default:
return -EINVAL;
}
}
#ifdef CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE
else if (op >= ECUSTOM_START_OPCODE && op <= ECUSTOM_MAX_OPCODE) {
struct pmc_regs *const pmc_reg =
(struct pmc_regs *)config->base_pmc;
switch (op) {
/* Enable/Disable PMC1 (port 62h/66h) interrupt */
case ECUSTOM_HOST_SUBS_INTERRUPT_EN:
if (*data) {
pmc_reg->PM1CTL |= PMC_PM1CTL_IBFIE;
} else {
pmc_reg->PM1CTL &= ~PMC_PM1CTL_IBFIE;
}
break;
case ECUSTOM_HOST_CMD_SEND_RESULT:
/* Write result to data output port (set OBF status) */
pmc_reg->PM2DO = (*data & 0xff);
/* Clear processing flag */
pmc_reg->PM2STS &= ~PMC_PM2STS_GPF;
break;
default:
return -EINVAL;
}
}
#endif /* CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE */
else {
return -ENOTSUP;
}
return 0;
}
#ifdef CONFIG_ESPI_OOB_CHANNEL
/* eSPI cycle type field */
#define ESPI_OOB_CYCLE_TYPE 0x21
#define ESPI_OOB_TAG 0x00
#define ESPI_OOB_TIMEOUT_MS 200
/* eSPI tag + len[11:8] field */
#define ESPI_TAG_LEN_FIELD(tag, len) \
((((tag) & 0xF) << 4) | (((len) >> 8) & 0xF))
struct espi_oob_msg_packet {
uint8_t data_byte[0];
};
static int espi_it8xxx2_send_oob(const struct device *dev,
struct espi_oob_packet *pckt)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct espi_queue1_regs *const queue1_reg =
(struct espi_queue1_regs *)config->base_espi_queue1;
struct espi_oob_msg_packet *oob_pckt =
(struct espi_oob_msg_packet *)pckt->buf;
if (!(slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK)) {
LOG_ERR("%s: OOB channel isn't ready", __func__);
return -EIO;
}
if (slave_reg->ESUCTRL0 & IT8XXX2_ESPI_UPSTREAM_BUSY) {
LOG_ERR("%s: OOB upstream busy", __func__);
return -EIO;
}
if (pckt->len > ESPI_IT8XXX2_OOB_MAX_PAYLOAD_SIZE) {
LOG_ERR("%s: Out of OOB queue space", __func__);
return -EINVAL;
}
/* Set cycle type */
slave_reg->ESUCTRL1 = IT8XXX2_ESPI_CYCLE_TYPE_OOB;
/* Set tag and length[11:8] */
slave_reg->ESUCTRL2 = ESPI_TAG_LEN_FIELD(0, pckt->len);
/* Set length [7:0] */
slave_reg->ESUCTRL3 = pckt->len & 0xff;
/* Set data byte */
for (int i = 0; i < pckt->len; i++) {
queue1_reg->UPSTREAM_DATA[i] = oob_pckt->data_byte[i];
}
/* Set upstream enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE;
/* Set upstream go */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO;
return 0;
}
static int espi_it8xxx2_receive_oob(const struct device *dev,
struct espi_oob_packet *pckt)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct espi_queue0_regs *const queue0_reg =
(struct espi_queue0_regs *)config->base_espi_queue0;
struct espi_oob_msg_packet *oob_pckt =
(struct espi_oob_msg_packet *)pckt->buf;
uint8_t oob_len;
if (!(slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK)) {
LOG_ERR("%s: OOB channel isn't ready", __func__);
return -EIO;
}
#ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC
struct espi_it8xxx2_data *const data = dev->data;
int ret;
/* Wait until receive OOB message or timeout */
ret = k_sem_take(&data->oob_upstream_go, K_MSEC(ESPI_OOB_TIMEOUT_MS));
if (ret == -EAGAIN) {
LOG_ERR("%s: Timeout", __func__);
return -ETIMEDOUT;
}
#endif
/* Get length */
oob_len = (slave_reg->ESOCTRL4 & IT8XXX2_ESPI_PUT_OOB_LEN_MASK);
/*
* Buffer passed to driver isn't enough.
* The first three bytes of buffer are cycle type, tag, and length.
*/
if (oob_len > pckt->len) {
LOG_ERR("%s: Out of rx buf %d vs %d", __func__,
oob_len, pckt->len);
return -EINVAL;
}
pckt->len = oob_len;
/* Get data byte */
for (int i = 0; i < oob_len; i++) {
oob_pckt->data_byte[i] = queue0_reg->PUT_OOB_DATA[i];
}
return 0;
}
static void espi_it8xxx2_oob_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
#ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC
struct espi_it8xxx2_data *const data = dev->data;
k_sem_init(&data->oob_upstream_go, 0, 1);
#endif
/* Upstream interrupt enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE;
/* PUT_OOB interrupt enable */
slave_reg->ESOCTRL1 |= IT8XXX2_ESPI_PUT_OOB_INTERRUPT_ENABLE;
}
#endif
#ifdef CONFIG_ESPI_FLASH_CHANNEL
#define ESPI_FLASH_TAG 0x01
#define ESPI_FLASH_READ_TIMEOUT_MS 200
#define ESPI_FLASH_WRITE_TIMEOUT_MS 500
#define ESPI_FLASH_ERASE_TIMEOUT_MS 1000
/* Successful completion without data */
#define ESPI_IT8XXX2_PUT_FLASH_C_SCWOD 0
/* Successful completion with data */
#define ESPI_IT8XXX2_PUT_FLASH_C_SCWD 4
enum espi_flash_cycle_type {
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ = 0x08,
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_WRITE = 0x09,
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_ERASE = 0x0A,
};
static int espi_it8xxx2_flash_trans(const struct device *dev,
struct espi_flash_packet *pckt,
enum espi_flash_cycle_type tran)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct espi_queue1_regs *const queue1_reg =
(struct espi_queue1_regs *)config->base_espi_queue1;
if (!(slave_reg->CH_FLASH_CAPCFG3 & IT8XXX2_ESPI_FC_READY_MASK)) {
LOG_ERR("%s: Flash channel isn't ready (tran:%d)",
__func__, tran);
return -EIO;
}
if (slave_reg->ESUCTRL0 & IT8XXX2_ESPI_UPSTREAM_BUSY) {
LOG_ERR("%s: Upstream busy (tran:%d)", __func__, tran);
return -EIO;
}
if (pckt->len > IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE) {
LOG_ERR("%s: Invalid size request (tran:%d)", __func__, tran);
return -EINVAL;
}
/* Set cycle type */
slave_reg->ESUCTRL1 = tran;
/* Set tag and length[11:8] */
slave_reg->ESUCTRL2 = (ESPI_FLASH_TAG << 4);
/*
* Set length [7:0]
* Note: for erasing, the least significant 3 bit of the length field
* specifies the size of the block to be erased:
* 001b: 4 Kbytes
* 010b: 64Kbytes
* 100b: 128 Kbytes
* 101b: 256 Kbytes
*/
slave_reg->ESUCTRL3 = pckt->len;
/* Set flash address */
queue1_reg->UPSTREAM_DATA[0] = (pckt->flash_addr >> 24) & 0xff;
queue1_reg->UPSTREAM_DATA[1] = (pckt->flash_addr >> 16) & 0xff;
queue1_reg->UPSTREAM_DATA[2] = (pckt->flash_addr >> 8) & 0xff;
queue1_reg->UPSTREAM_DATA[3] = pckt->flash_addr & 0xff;
return 0;
}
static int espi_it8xxx2_flash_read(const struct device *dev,
struct espi_flash_packet *pckt)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
int ret;
ret = espi_it8xxx2_flash_trans(dev, pckt,
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ);
if (ret) {
return ret;
}
/* Set upstream enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE;
/* Set upstream go */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO;
/* Wait until upstream done or timeout */
ret = k_sem_take(&data->flash_upstream_go,
K_MSEC(ESPI_FLASH_READ_TIMEOUT_MS));
if (ret == -EAGAIN) {
LOG_ERR("%s: Timeout", __func__);
return -ETIMEDOUT;
}
if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWD) {
LOG_ERR("%s: Unsuccessful completion", __func__);
return -EIO;
}
memcpy(pckt->buf, data->flash_buf, pckt->len);
LOG_INF("%s: read (%d) bytes from flash over espi", __func__,
data->put_flash_len);
return 0;
}
static int espi_it8xxx2_flash_write(const struct device *dev,
struct espi_flash_packet *pckt)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct espi_queue1_regs *const queue1_reg =
(struct espi_queue1_regs *)config->base_espi_queue1;
int ret;
ret = espi_it8xxx2_flash_trans(dev, pckt,
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_WRITE);
if (ret) {
return ret;
}
/* Set data byte */
for (int i = 0; i < pckt->len; i++) {
queue1_reg->UPSTREAM_DATA[4 + i] = pckt->buf[i];
}
/* Set upstream enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE;
/* Set upstream go */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO;
/* Wait until upstream done or timeout */
ret = k_sem_take(&data->flash_upstream_go,
K_MSEC(ESPI_FLASH_WRITE_TIMEOUT_MS));
if (ret == -EAGAIN) {
LOG_ERR("%s: Timeout", __func__);
return -ETIMEDOUT;
}
if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWOD) {
LOG_ERR("%s: Unsuccessful completion", __func__);
return -EIO;
}
return 0;
}
static int espi_it8xxx2_flash_erase(const struct device *dev,
struct espi_flash_packet *pckt)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
int ret;
ret = espi_it8xxx2_flash_trans(dev, pckt,
IT8XXX2_ESPI_CYCLE_TYPE_FLASH_ERASE);
if (ret) {
return ret;
}
/* Set upstream enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE;
/* Set upstream go */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO;
/* Wait until upstream done or timeout */
ret = k_sem_take(&data->flash_upstream_go,
K_MSEC(ESPI_FLASH_ERASE_TIMEOUT_MS));
if (ret == -EAGAIN) {
LOG_ERR("%s: Timeout", __func__);
return -ETIMEDOUT;
}
if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWOD) {
LOG_ERR("%s: Unsuccessful completion", __func__);
return -EIO;
}
return 0;
}
static void espi_it8xxx2_flash_upstream_done_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct espi_queue1_regs *const queue1_reg =
(struct espi_queue1_regs *)config->base_espi_queue1;
data->put_flash_cycle_type = slave_reg->ESUCTRL6;
data->put_flash_tag = slave_reg->ESUCTRL7 &
IT8XXX2_ESPI_PUT_FLASH_TAG_MASK;
data->put_flash_len = slave_reg->ESUCTRL8 &
IT8XXX2_ESPI_PUT_FLASH_LEN_MASK;
if (slave_reg->ESUCTRL1 == IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ) {
if (data->put_flash_len > IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE) {
LOG_ERR("%s: Invalid size (%d)", __func__,
data->put_flash_len);
} else {
for (int i = 0; i < data->put_flash_len; i++) {
data->flash_buf[i] =
queue1_reg->UPSTREAM_DATA[i];
}
}
}
k_sem_give(&data->flash_upstream_go);
}
static void espi_it8xxx2_flash_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
k_sem_init(&data->flash_upstream_go, 0, 1);
/* Upstream interrupt enable */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE;
}
#endif /* CONFIG_ESPI_FLASH_CHANNEL */
/* eSPI driver registration */
static int espi_it8xxx2_init(const struct device *dev);
static const struct espi_driver_api espi_it8xxx2_driver_api = {
.config = espi_it8xxx2_configure,
.get_channel_status = espi_it8xxx2_channel_ready,
.send_vwire = espi_it8xxx2_send_vwire,
.receive_vwire = espi_it8xxx2_receive_vwire,
.manage_callback = espi_it8xxx2_manage_callback,
.read_lpc_request = espi_it8xxx2_read_lpc_request,
.write_lpc_request = espi_it8xxx2_write_lpc_request,
#ifdef CONFIG_ESPI_OOB_CHANNEL
.send_oob = espi_it8xxx2_send_oob,
.receive_oob = espi_it8xxx2_receive_oob,
#endif
#ifdef CONFIG_ESPI_FLASH_CHANNEL
.flash_read = espi_it8xxx2_flash_read,
.flash_write = espi_it8xxx2_flash_write,
.flash_erase = espi_it8xxx2_flash_erase,
#endif
};
static void espi_it8xxx2_vw_notify_system_state(const struct device *dev,
enum espi_vwire_signal signal)
{
struct espi_it8xxx2_data *const data = dev->data;
struct espi_event evt = {ESPI_BUS_EVENT_VWIRE_RECEIVED, 0, 0};
uint8_t level = 0;
espi_it8xxx2_receive_vwire(dev, signal, &level);
evt.evt_details = signal;
evt.evt_data = level;
espi_send_callbacks(&data->callbacks, dev, evt);
}
static void espi_vw_signal_no_isr(const struct device *dev)
{
ARG_UNUSED(dev);
}
static const struct espi_vw_signal_t vwidx2_signals[] = {
{ESPI_VWIRE_SIGNAL_SLP_S3, NULL},
{ESPI_VWIRE_SIGNAL_SLP_S4, NULL},
{ESPI_VWIRE_SIGNAL_SLP_S5, NULL},
};
static void espi_it8xxx2_vwidx2_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx2_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx2_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
static void espi_vw_oob_rst_warn_isr(const struct device *dev)
{
uint8_t level = 0;
espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_OOB_RST_WARN, &level);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_OOB_RST_ACK, level);
}
static void espi_vw_pltrst_isr(const struct device *dev)
{
uint8_t pltrst = 0;
espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_PLTRST, &pltrst);
if (pltrst) {
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SMI, 1);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SCI, 1);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_HOST_RST_ACK, 1);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_RST_CPU_INIT, 1);
}
LOG_INF("VW PLTRST_L %sasserted", pltrst ? "de" : "");
}
static const struct espi_vw_signal_t vwidx3_signals[] = {
{ESPI_VWIRE_SIGNAL_OOB_RST_WARN, espi_vw_oob_rst_warn_isr},
{ESPI_VWIRE_SIGNAL_PLTRST, espi_vw_pltrst_isr},
};
static void espi_it8xxx2_vwidx3_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx3_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx3_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
vwidx3_signals[i].vw_signal_isr(dev);
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
static void espi_vw_host_rst_warn_isr(const struct device *dev)
{
uint8_t level = 0;
espi_it8xxx2_receive_vwire(dev,
ESPI_VWIRE_SIGNAL_HOST_RST_WARN, &level);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_HOST_RST_ACK, level);
}
static const struct espi_vw_signal_t vwidx7_signals[] = {
{ESPI_VWIRE_SIGNAL_HOST_RST_WARN, espi_vw_host_rst_warn_isr},
};
static void espi_it8xxx2_vwidx7_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx7_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx7_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
vwidx7_signals[i].vw_signal_isr(dev);
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
static void espi_vw_sus_warn_isr(const struct device *dev)
{
uint8_t level = 0;
espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_SUS_WARN, &level);
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SUS_ACK, level);
}
static const struct espi_vw_signal_t vwidx41_signals[] = {
{ESPI_VWIRE_SIGNAL_SUS_WARN, espi_vw_sus_warn_isr},
{ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK, espi_vw_signal_no_isr},
{ESPI_VWIRE_SIGNAL_SLP_A, espi_vw_signal_no_isr},
};
static void espi_it8xxx2_vwidx41_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx41_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx41_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
vwidx41_signals[i].vw_signal_isr(dev);
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
static const struct espi_vw_signal_t vwidx42_signals[] = {
{ESPI_VWIRE_SIGNAL_SLP_LAN, NULL},
{ESPI_VWIRE_SIGNAL_SLP_WLAN, NULL},
};
static void espi_it8xxx2_vwidx42_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx42_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx42_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
static void espi_it8xxx2_vwidx43_isr(const struct device *dev,
uint8_t updated_flag)
{
ARG_UNUSED(dev);
/*
* We haven't send callback to system because there is no index 43
* virtual wire signal is listed in enum espi_vwire_signal.
*/
LOG_INF("vw isr %s is ignored!", __func__);
}
static void espi_it8xxx2_vwidx44_isr(const struct device *dev,
uint8_t updated_flag)
{
ARG_UNUSED(dev);
/*
* We haven't send callback to system because there is no index 44
* virtual wire signal is listed in enum espi_vwire_signal.
*/
LOG_INF("vw isr %s is ignored!", __func__);
}
static const struct espi_vw_signal_t vwidx47_signals[] = {
{ESPI_VWIRE_SIGNAL_HOST_C10, NULL},
};
static void espi_it8xxx2_vwidx47_isr(const struct device *dev,
uint8_t updated_flag)
{
for (int i = 0; i < ARRAY_SIZE(vwidx47_signals); i++) {
enum espi_vwire_signal vw_signal = vwidx47_signals[i].signal;
if (updated_flag & vw_channel_list[vw_signal].level_mask) {
espi_it8xxx2_vw_notify_system_state(dev, vw_signal);
}
}
}
/*
* The ISR of espi VW interrupt in array needs to match bit order in
* ESPI VW VWCTRL1 register.
*/
static const struct vwidx_isr_t vwidx_isr_list[] = {
[0] = {espi_it8xxx2_vwidx2_isr, 0x02},
[1] = {espi_it8xxx2_vwidx3_isr, 0x03},
[2] = {espi_it8xxx2_vwidx7_isr, 0x07},
[3] = {espi_it8xxx2_vwidx41_isr, 0x41},
[4] = {espi_it8xxx2_vwidx42_isr, 0x42},
[5] = {espi_it8xxx2_vwidx43_isr, 0x43},
[6] = {espi_it8xxx2_vwidx44_isr, 0x44},
[7] = {espi_it8xxx2_vwidx47_isr, 0x47},
};
/*
* This is used to record the previous VW valid/level field state to discover
* changes. Then do following sequence only when state is changed.
*/
static uint8_t vwidx_cached_flag[ARRAY_SIZE(vwidx_isr_list)];
static void espi_it8xxx2_reset_vwidx_cache(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_vw_regs *const vw_reg =
(struct espi_vw_regs *)config->base_espi_vw;
/* reset vwidx_cached_flag */
for (int i = 0; i < ARRAY_SIZE(vwidx_isr_list); i++) {
vwidx_cached_flag[i] =
vw_reg->VW_INDEX[vwidx_isr_list[i].vw_index];
}
}
static void espi_it8xxx2_vw_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_vw_regs *const vw_reg =
(struct espi_vw_regs *)config->base_espi_vw;
uint8_t vwidx_updated = vw_reg->VWCTRL1;
/* write-1 to clear */
vw_reg->VWCTRL1 = vwidx_updated;
for (int i = 0; i < ARRAY_SIZE(vwidx_isr_list); i++) {
if (vwidx_updated & BIT(i)) {
uint8_t vw_flag;
vw_flag = vw_reg->VW_INDEX[vwidx_isr_list[i].vw_index];
vwidx_isr_list[i].vwidx_isr(dev,
vwidx_cached_flag[i] ^ vw_flag);
vwidx_cached_flag[i] = vw_flag;
}
}
}
static void espi_it8xxx2_ch_notify_system_state(const struct device *dev,
enum espi_channel ch, bool en)
{
struct espi_it8xxx2_data *const data = dev->data;
struct espi_event evt = {
.evt_type = ESPI_BUS_EVENT_CHANNEL_READY,
.evt_details = ch,
.evt_data = en,
};
espi_send_callbacks(&data->callbacks, dev, evt);
}
/*
* Peripheral channel enable asserted flag.
* A 0-to-1 or 1-to-0 transition on "Peripheral Channel Enable" bit.
*/
static void espi_it8xxx2_peripheral_ch_en_isr(const struct device *dev,
bool enable)
{
espi_it8xxx2_ch_notify_system_state(dev,
ESPI_CHANNEL_PERIPHERAL, enable);
}
/*
* VW channel enable asserted flag.
* A 0-to-1 or 1-to-0 transition on "Virtual Wire Channel Enable" bit.
*/
static void espi_it8xxx2_vw_ch_en_isr(const struct device *dev, bool enable)
{
espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_VWIRE, enable);
}
/*
* OOB message channel enable asserted flag.
* A 0-to-1 or 1-to-0 transition on "OOB Message Channel Enable" bit.
*/
static void espi_it8xxx2_oob_ch_en_isr(const struct device *dev, bool enable)
{
espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_OOB, enable);
}
/*
* Flash channel enable asserted flag.
* A 0-to-1 or 1-to-0 transition on "Flash Access Channel Enable" bit.
*/
static void espi_it8xxx2_flash_ch_en_isr(const struct device *dev, bool enable)
{
if (enable) {
espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS, 1);
espi_it8xxx2_send_vwire(dev,
ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE, 1);
}
espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_FLASH, enable);
}
static void espi_it8xxx2_put_pc_status_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
/*
* TODO: To check cycle type (bit[3-0] at ESPCTRL0) and make
* corresponding modification if needed.
*/
LOG_INF("isr %s is ignored!", __func__);
/* write-1-clear to release PC_FREE */
slave_reg->ESPCTRL0 = IT8XXX2_ESPI_INTERRUPT_PUT_PC;
}
#ifdef CONFIG_ESPI_OOB_CHANNEL
static void espi_it8xxx2_upstream_channel_disable_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
LOG_INF("isr %s is ignored!", __func__);
/* write-1 to clear this bit */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE;
}
static void espi_it8xxx2_put_oob_status_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_it8xxx2_data *const data = dev->data;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
#ifdef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC
struct espi_event evt = { .evt_type = ESPI_BUS_EVENT_OOB_RECEIVED,
.evt_details = 0,
.evt_data = 0 };
#endif
/* Write-1 to clear this bit for the next coming posted transaction. */
slave_reg->ESOCTRL0 |= IT8XXX2_ESPI_PUT_OOB_STATUS;
#ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC
k_sem_give(&data->oob_upstream_go);
#else
/* Additional detail is length field of PUT_OOB message packet. */
evt.evt_details = (slave_reg->ESOCTRL4 & IT8XXX2_ESPI_PUT_OOB_LEN_MASK);
espi_send_callbacks(&data->callbacks, dev, evt);
#endif
}
#endif
#if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL)
static void espi_it8xxx2_upstream_done_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
#ifdef CONFIG_ESPI_FLASH_CHANNEL
/* cycle type is flash read, write, or erase */
if (slave_reg->ESUCTRL1 != IT8XXX2_ESPI_CYCLE_TYPE_OOB) {
espi_it8xxx2_flash_upstream_done_isr(dev);
}
#endif
/* write-1 to clear this bit */
slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_DONE;
/* upstream disable */
slave_reg->ESUCTRL0 &= ~IT8XXX2_ESPI_UPSTREAM_ENABLE;
}
#endif
/*
* The ISR of espi interrupt event in array need to be matched bit order in
* IT8XXX2 ESPI ESGCTRL0 register.
*/
static const struct espi_isr_t espi_isr_list[] = {
[0] = {espi_it8xxx2_peripheral_ch_en_isr, ASSERTED_FLAG},
[1] = {espi_it8xxx2_vw_ch_en_isr, ASSERTED_FLAG},
[2] = {espi_it8xxx2_oob_ch_en_isr, ASSERTED_FLAG},
[3] = {espi_it8xxx2_flash_ch_en_isr, ASSERTED_FLAG},
[4] = {espi_it8xxx2_peripheral_ch_en_isr, DEASSERTED_FLAG},
[5] = {espi_it8xxx2_vw_ch_en_isr, DEASSERTED_FLAG},
[6] = {espi_it8xxx2_oob_ch_en_isr, DEASSERTED_FLAG},
[7] = {espi_it8xxx2_flash_ch_en_isr, DEASSERTED_FLAG},
};
static void espi_it8xxx2_isr(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
/* get espi interrupt events */
uint8_t espi_event = slave_reg->ESGCTRL0;
#if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL)
uint8_t espi_upstream = slave_reg->ESUCTRL0;
#endif
/* write-1 to clear */
slave_reg->ESGCTRL0 = espi_event;
/* process espi interrupt events */
for (int i = 0; i < ARRAY_SIZE(espi_isr_list); i++) {
if (espi_event & BIT(i)) {
espi_isr_list[i].espi_isr(dev,
espi_isr_list[i].isr_type);
}
}
/*
* bit7: the peripheral has received a peripheral posted/completion.
* This bit indicates the peripheral has received a packet from eSPI
* peripheral channel.
*/
if (slave_reg->ESPCTRL0 & IT8XXX2_ESPI_INTERRUPT_PUT_PC) {
espi_it8xxx2_put_pc_status_isr(dev);
}
#ifdef CONFIG_ESPI_OOB_CHANNEL
/*
* The corresponding channel of the eSPI upstream transaction is
* disabled.
*/
if (espi_upstream & IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE) {
espi_it8xxx2_upstream_channel_disable_isr(dev);
}
/* The eSPI slave has received a PUT_OOB message. */
if (slave_reg->ESOCTRL0 & IT8XXX2_ESPI_PUT_OOB_STATUS) {
espi_it8xxx2_put_oob_status_isr(dev);
}
#endif
/* eSPI oob and flash channels use the same interrupt of upstream. */
#if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL)
/* The eSPI upstream transaction is done. */
if (espi_upstream & IT8XXX2_ESPI_UPSTREAM_DONE) {
espi_it8xxx2_upstream_done_isr(dev);
}
#endif
}
void espi_it8xxx2_enable_pad_ctrl(const struct device *dev, bool enable)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
if (enable) {
/* Enable eSPI pad. */
slave_reg->ESGCTRL2 &= ~IT8XXX2_ESPI_INPUT_PAD_GATING;
} else {
/* Disable eSPI pad. */
slave_reg->ESGCTRL2 |= IT8XXX2_ESPI_INPUT_PAD_GATING;
}
}
void espi_it8xxx2_enable_trans_irq(const struct device *dev, bool enable)
{
const struct espi_it8xxx2_config *const config = dev->config;
if (enable) {
irq_enable(IT8XXX2_TRANS_IRQ);
} else {
irq_disable(IT8XXX2_TRANS_IRQ);
/* Clear pending interrupt */
it8xxx2_wuc_clear_status(config->wuc.wucs, config->wuc.mask);
}
}
static void espi_it8xxx2_trans_isr(const struct device *dev)
{
/*
* This interrupt is only used to wake up CPU, there is no need to do
* anything in the isr in addition to disable interrupt.
*/
espi_it8xxx2_enable_trans_irq(dev, false);
}
void espi_it8xxx2_espi_reset_isr(const struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct espi_it8xxx2_data *const data = ESPI_IT8XXX2_SOC_DEV->data;
struct espi_event evt = {ESPI_BUS_RESET, 0, 0};
bool espi_reset = gpio_pin_get(port, (find_msb_set(pins) - 1));
if (!(espi_reset)) {
/* Reset vwidx_cached_flag[] when espi_reset# asserted. */
espi_it8xxx2_reset_vwidx_cache(ESPI_IT8XXX2_SOC_DEV);
}
evt.evt_data = espi_reset;
espi_send_callbacks(&data->callbacks, ESPI_IT8XXX2_SOC_DEV, evt);
LOG_INF("eSPI reset %sasserted", espi_reset ? "de" : "");
}
/* eSPI reset# is enabled on GPD2 */
#define ESPI_IT8XXX2_ESPI_RESET_PORT DEVICE_DT_GET(DT_NODELABEL(gpiod))
#define ESPI_IT8XXX2_ESPI_RESET_PIN 2
static void espi_it8xxx2_enable_reset(void)
{
struct gpio_it8xxx2_regs *const gpio_regs = GPIO_IT8XXX2_REG_BASE;
static struct gpio_callback espi_reset_cb;
/* eSPI reset is enabled on GPD2 */
gpio_regs->GPIO_GCR =
(gpio_regs->GPIO_GCR & ~IT8XXX2_GPIO_GCR_ESPI_RST_EN_MASK) |
(IT8XXX2_GPIO_GCR_ESPI_RST_D2 << IT8XXX2_GPIO_GCR_ESPI_RST_POS);
/* enable eSPI reset isr */
gpio_init_callback(&espi_reset_cb, espi_it8xxx2_espi_reset_isr,
BIT(ESPI_IT8XXX2_ESPI_RESET_PIN));
gpio_add_callback(ESPI_IT8XXX2_ESPI_RESET_PORT, &espi_reset_cb);
gpio_pin_interrupt_configure(ESPI_IT8XXX2_ESPI_RESET_PORT,
ESPI_IT8XXX2_ESPI_RESET_PIN,
GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_BOTH);
}
static struct espi_it8xxx2_data espi_it8xxx2_data_0;
static const struct espi_it8xxx2_config espi_it8xxx2_config_0 = {
.base_espi_slave = DT_INST_REG_ADDR_BY_IDX(0, 0),
.base_espi_vw = DT_INST_REG_ADDR_BY_IDX(0, 1),
.base_espi_queue0 = DT_INST_REG_ADDR_BY_IDX(0, 2),
.base_espi_queue1 = DT_INST_REG_ADDR_BY_IDX(0, 3),
.base_ec2i = DT_INST_REG_ADDR_BY_IDX(0, 4),
.base_kbc = DT_INST_REG_ADDR_BY_IDX(0, 5),
.base_pmc = DT_INST_REG_ADDR_BY_IDX(0, 6),
.base_smfi = DT_INST_REG_ADDR_BY_IDX(0, 7),
.wuc = IT8XXX2_DT_WUC_ITEMS_FUNC(0, 0),
};
DEVICE_DT_INST_DEFINE(0, &espi_it8xxx2_init, NULL,
&espi_it8xxx2_data_0, &espi_it8xxx2_config_0,
PRE_KERNEL_2, CONFIG_ESPI_INIT_PRIORITY,
&espi_it8xxx2_driver_api);
static int espi_it8xxx2_init(const struct device *dev)
{
const struct espi_it8xxx2_config *const config = dev->config;
struct espi_vw_regs *const vw_reg =
(struct espi_vw_regs *)config->base_espi_vw;
struct espi_slave_regs *const slave_reg =
(struct espi_slave_regs *)config->base_espi_slave;
struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE;
/* configure VCC detector */
gctrl->GCTRL_RSTS = (gctrl->GCTRL_RSTS &
~(IT8XXX2_GCTRL_VCCDO_MASK | IT8XXX2_GCTRL_HGRST)) |
(IT8XXX2_GCTRL_VCCDO_VCC_ON | IT8XXX2_GCTRL_GRST);
/* enable PNPCFG devices */
pnpcfg_it8xxx2_init(dev);
#ifdef CONFIG_ESPI_PERIPHERAL_8042_KBC
/* enable kbc port (60h/64h) */
kbc_it8xxx2_init(dev);
#endif
#ifdef CONFIG_ESPI_PERIPHERAL_HOST_IO
/* enable pmc1 for ACPI port (62h/66h) */
pmc1_it8xxx2_init(dev);
#endif
#ifdef CONFIG_ESPI_PERIPHERAL_DEBUG_PORT_80
/* Accept Port 80h Cycle */
port80_it8xxx2_init(dev);
#endif
#if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \
defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION)
smfi_it8xxx2_init(dev);
#endif
#ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD
/* enable pmc2 for host command port */
pmc2_it8xxx2_init(dev);
#endif
/* Reset vwidx_cached_flag[] at initialization */
espi_it8xxx2_reset_vwidx_cache(dev);
/* Enable espi vw interrupt */
vw_reg->VWCTRL0 |= IT8XXX2_ESPI_VW_INTERRUPT_ENABLE;
IRQ_CONNECT(IT8XXX2_ESPI_VW_IRQ, 0, espi_it8xxx2_vw_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_ESPI_VW_IRQ);
/* Reset PLTRST# virtual wire signal during eSPI reset */
vw_reg->VWCTRL2 |= IT8XXX2_ESPI_VW_RESET_PLTRST;
#ifdef CONFIG_ESPI_OOB_CHANNEL
espi_it8xxx2_oob_init(dev);
#endif
#ifdef CONFIG_ESPI_FLASH_CHANNEL
espi_it8xxx2_flash_init(dev);
#endif
/* Enable espi interrupt */
slave_reg->ESGCTRL1 |= IT8XXX2_ESPI_INTERRUPT_ENABLE;
IRQ_CONNECT(IT8XXX2_ESPI_IRQ, 0, espi_it8xxx2_isr,
DEVICE_DT_INST_GET(0), 0);
irq_enable(IT8XXX2_ESPI_IRQ);
/* enable interrupt and reset from eSPI_reset# */
espi_it8xxx2_enable_reset();
/*
* Enable eSPI to WUC.
* If an eSPI transaction is accepted, WU42 interrupt will be asserted.
*/
slave_reg->ESGCTRL2 |= IT8XXX2_ESPI_TO_WUC_ENABLE;
/* Enable WU42 of WUI */
it8xxx2_wuc_clear_status(config->wuc.wucs, config->wuc.mask);
it8xxx2_wuc_enable(config->wuc.wucs, config->wuc.mask);
/*
* Only register isr here, the interrupt only need to be enabled
* before CPU and RAM clocks gated in the idle function.
*/
IRQ_CONNECT(IT8XXX2_TRANS_IRQ, 0, espi_it8xxx2_trans_isr,
DEVICE_DT_INST_GET(0), 0);
return 0;
}