zephyr/boards/posix/native_posix/hw_models_top.c

195 lines
4.0 KiB
C

/*
* Copyright (c) 2017 Oticon A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* Bare-bones HW model sufficient to run some of the sample apps
* and regression tests
*/
#include <stdint.h>
#include <signal.h>
#include <stddef.h>
#include "hw_models_top.h"
#include "timer_model.h"
#include "irq_ctrl.h"
#include "posix_board_if.h"
#include "posix_soc_if.h"
static u64_t device_time; /* The actual time as known by the device */
static u64_t end_of_time = NEVER; /* When will this device stop */
/* List of HW model timers: */
extern u64_t hw_timer_timer; /* When should this timer_model be called */
extern u64_t irq_ctrl_timer;
static enum { HWTIMER = 0, IRQCNT, NUMBER_OF_TIMERS, NONE }
next_timer_index = NONE;
static u64_t *Timer_list[NUMBER_OF_TIMERS] = {
&hw_timer_timer,
&irq_ctrl_timer
};
static u64_t next_timer_time;
/* Have we received a SIGTERM or SIGINT */
static volatile sig_atomic_t signaled_end;
/**
* Handler for SIGTERM and SIGINT
*/
void hwm_signal_end_handler(int sig)
{
signaled_end = 1;
}
/**
* Set the handler for SIGTERM and SIGINT which will cause the
* program to exit gracefully when they are received the 1st time
*
* Note that our handler only sets a variable indicating the signal was
* received, and in each iteration of the hw main loop this variable is
* evaluated.
* If for some reason (the program is stuck) we never evaluate it, the program
* would never exit.
* Therefore we set SA_RESETHAND: This way, the 2nd time the signal is received
* the default handler would be called to terminate the program no matter what.
*
* Note that SA_RESETHAND requires either _POSIX_C_SOURCE>=200809 or
* _XOPEN_SOURCE>=500
*/
void hwm_set_sig_handler(void)
{
struct sigaction act;
int e;
act.sa_handler = hwm_signal_end_handler;
e = sigemptyset(&act.sa_mask);
if (e) {
posix_print_error_and_exit("Error on sigemptyset()\n");
}
act.sa_flags = SA_RESETHAND;
e = sigaction(SIGTERM, &act, NULL);
if (e) {
posix_print_error_and_exit("Error on sigaction()\n");
}
e = sigaction(SIGINT, &act, NULL);
if (e) {
posix_print_error_and_exit("Error on sigaction()\n");
}
}
static void hwm_sleep_until_next_timer(void)
{
if (next_timer_time >= device_time) {
device_time = next_timer_time;
} else {
posix_print_warning("next_timer_time corrupted (%"PRIu64"<= %"
PRIu64", timer idx=%i)\n",
next_timer_time,
device_time,
next_timer_index);
}
if (signaled_end || (device_time >= end_of_time)) {
posix_print_trace("\nStopped after %.3Lfs\n",
((long double)device_time)/1.0e6);
main_clean_up(0);
}
}
/**
* Find in between all timers which is the next one
* and update next_timer_* accordingly
*/
void hwm_find_next_timer(void)
{
next_timer_index = 0;
next_timer_time = *Timer_list[0];
for (unsigned int i = 1; i < NUMBER_OF_TIMERS ; i++) {
if (next_timer_time > *Timer_list[i]) {
next_timer_index = i;
next_timer_time = *Timer_list[i];
}
}
}
/**
* Entry point for the HW models
* The HW models execute in an infinite loop until terminated
*/
void hwm_main_loop(void)
{
while (1) {
hwm_sleep_until_next_timer();
switch (next_timer_index) {
case HWTIMER:
hwtimer_timer_reached();
break;
case IRQCNT:
hw_irq_ctrl_timer_triggered();
break;
default:
posix_print_error_and_exit(
"next_timer_index corrupted\n");
break;
}
hwm_find_next_timer();
}
}
/**
* Set the simulated time when the process will stop
*/
void hwm_set_end_of_time(u64_t new_end_of_time)
{
end_of_time = new_end_of_time;
}
/**
* Return the current time as known by the device
*/
u64_t hwm_get_time(void)
{
return device_time;
}
/**
* Function to initialize the HW models
*/
void hwm_init(void)
{
hwm_set_sig_handler();
hwtimer_init();
hw_irq_ctrl_init();
hwm_find_next_timer();
}
/**
* Function to free any resources allocated by the HW models
* Note that this function needs to be designed so it is possible
* to call it more than once during cleanup
*/
void hwm_cleanup(void)
{
hwtimer_cleanup();
hw_irq_ctrl_cleanup();
}