zephyr/arch/Kconfig

996 lines
32 KiB
Plaintext

# General architecture configuration options
# Copyright (c) 2014-2015 Wind River Systems, Inc.
# Copyright (c) 2015 Intel Corporation
# Copyright (c) 2016 Cadence Design Systems, Inc.
# SPDX-License-Identifier: Apache-2.0
# Include these first so that any properties (e.g. defaults) below can be
# overridden (by defining symbols in multiple locations)
# Note: $ARCH might be a glob pattern
source "$(ARCH_DIR)/$(ARCH)/Kconfig"
# Architecture symbols
#
# Should be 'select'ed by low-level symbols like SOC_SERIES_* or, lacking that,
# by SOC_*.
config ARC
bool
select ARCH_IS_SET
select HAS_DTS
imply XIP
select ARCH_HAS_THREAD_LOCAL_STORAGE
help
ARC architecture
config ARM
bool
select ARCH_IS_SET
select ARCH_SUPPORTS_COREDUMP if CPU_CORTEX_M
select HAS_DTS
# FIXME: current state of the code for all ARM requires this, but
# is really only necessary for Cortex-M with ARM MPU!
select GEN_PRIV_STACKS
select ARCH_HAS_THREAD_LOCAL_STORAGE if CPU_CORTEX_R || CPU_CORTEX_M
help
ARM architecture
config ARM64
bool
select ARCH_IS_SET
select 64BIT
select HAS_DTS
select HAS_ARM_SMCCC
select ARCH_HAS_THREAD_LOCAL_STORAGE
select USE_SWITCH
select USE_SWITCH_SUPPORTED
help
ARM64 (AArch64) architecture
config SPARC
bool
select ARCH_IS_SET
select HAS_DTS
select USE_SWITCH
select USE_SWITCH_SUPPORTED
select BIG_ENDIAN
select ATOMIC_OPERATIONS_BUILTIN if SPARC_CASA
select ATOMIC_OPERATIONS_C if !SPARC_CASA
select ARCH_HAS_THREAD_LOCAL_STORAGE
select ARCH_HAS_EXTRA_EXCEPTION_INFO
help
SPARC architecture
config X86
bool
select ARCH_IS_SET
select ATOMIC_OPERATIONS_BUILTIN
select HAS_DTS
select ARCH_SUPPORTS_COREDUMP
select CPU_HAS_MMU
select ARCH_MEM_DOMAIN_DATA if USERSPACE && !X86_COMMON_PAGE_TABLE
select ARCH_MEM_DOMAIN_SYNCHRONOUS_API if USERSPACE
select ARCH_HAS_GDBSTUB if !X86_64
select ARCH_HAS_TIMING_FUNCTIONS
select ARCH_HAS_THREAD_LOCAL_STORAGE
select ARCH_HAS_DEMAND_PAGING
select NEED_LIBC_MEM_PARTITION if USERSPACE && TIMING_FUNCTIONS \
&& !BOARD_HAS_TIMING_FUNCTIONS \
&& !SOC_HAS_TIMING_FUNCTIONS
help
x86 architecture
config NIOS2
bool
select ARCH_IS_SET
select ATOMIC_OPERATIONS_C
select HAS_DTS
imply XIP
select ARCH_HAS_TIMING_FUNCTIONS
help
Nios II Gen 2 architecture
config RISCV
bool
select ARCH_IS_SET
select HAS_DTS
select ARCH_HAS_THREAD_LOCAL_STORAGE
imply XIP
help
RISCV architecture
config XTENSA
bool
select ARCH_IS_SET
select HAS_DTS
select USE_SWITCH
select USE_SWITCH_SUPPORTED
imply ATOMIC_OPERATIONS_ARCH
help
Xtensa architecture
config ARCH_POSIX
bool
select ARCH_IS_SET
select HAS_DTS
select ATOMIC_OPERATIONS_BUILTIN
select ARCH_HAS_CUSTOM_SWAP_TO_MAIN
select ARCH_HAS_CUSTOM_BUSY_WAIT
select ARCH_HAS_THREAD_ABORT
select NATIVE_APPLICATION
select HAS_COVERAGE_SUPPORT
help
POSIX (native) architecture
config ARCH_IS_SET
bool
help
Helper symbol to detect SoCs forgetting to select one of the arch
symbols above. See the top-level CMakeLists.txt.
menu "General Architecture Options"
module = ARCH
module-str = arch
source "subsys/logging/Kconfig.template.log_config"
module = MPU
module-str = mpu
source "subsys/logging/Kconfig.template.log_config"
config BIG_ENDIAN
bool
help
This option tells the build system that the target system is big-endian.
Little-endian architecture is the default and should leave this option
unselected. This option is selected by arch/$ARCH/Kconfig,
soc/**/Kconfig, or boards/**/Kconfig and the user should generally avoid
modifying it. The option is used to select linker script OUTPUT_FORMAT
and command line option for gen_isr_tables.py.
config 64BIT
bool
help
This option tells the build system that the target system is
using a 64-bit address space, meaning that pointer and long types
are 64 bits wide. This option is selected by arch/$ARCH/Kconfig,
soc/**/Kconfig, or boards/**/Kconfig and the user should generally
avoid modifying it.
# Workaround for not being able to have commas in macro arguments
DT_CHOSEN_Z_SRAM := zephyr,sram
config SRAM_SIZE
int "SRAM Size in kB"
default $(dt_chosen_reg_size_int,$(DT_CHOSEN_Z_SRAM),0,K)
help
The SRAM size in kB. The default value comes from /chosen/zephyr,sram in
devicetree. The user should generally avoid changing it via menuconfig or
in configuration files.
config SRAM_BASE_ADDRESS
hex "SRAM Base Address"
default $(dt_chosen_reg_addr_hex,$(DT_CHOSEN_Z_SRAM))
help
The SRAM base address. The default value comes from from
/chosen/zephyr,sram in devicetree. The user should generally avoid
changing it via menuconfig or in configuration files.
if ARC || ARM || ARM64 || NIOS2 || X86
# Workaround for not being able to have commas in macro arguments
DT_CHOSEN_Z_FLASH := zephyr,flash
config FLASH_SIZE
int "Flash Size in kB"
default $(dt_chosen_reg_size_int,$(DT_CHOSEN_Z_FLASH),0,K) if (XIP && (ARM ||ARM64)) || !ARM
help
This option specifies the size of the flash in kB. It is normally set by
the board's defconfig file and the user should generally avoid modifying
it via the menu configuration.
config FLASH_BASE_ADDRESS
hex "Flash Base Address"
default $(dt_chosen_reg_addr_hex,$(DT_CHOSEN_Z_FLASH)) if (XIP && (ARM || ARM64)) || !ARM
help
This option specifies the base address of the flash on the board. It is
normally set by the board's defconfig file and the user should generally
avoid modifying it via the menu configuration.
endif # ARM || ARM64 || ARC || NIOS2 || X86
if ARCH_HAS_TRUSTED_EXECUTION
config TRUSTED_EXECUTION_SECURE
bool "Trusted Execution: Secure firmware image"
help
Select this option to enable building a Secure firmware
image for a platform that supports Trusted Execution. A
Secure firmware image will execute in Secure state. It may
allow the CPU to execute in Non-Secure (Normal) state.
Therefore, a Secure firmware image shall be able to
configure security attributions of CPU resources (memory
areas, peripherals, interrupts, etc.) as well as to handle
faults, related to security violations. It may optionally
allow certain functions to be called from the Non-Secure
(Normal) domain.
config TRUSTED_EXECUTION_NONSECURE
depends on !TRUSTED_EXECUTION_SECURE
bool "Trusted Execution: Non-Secure firmware image"
help
Select this option to enable building a Non-Secure
firmware image for a platform that supports Trusted
Execution. A Non-Secure firmware image will execute
in Non-Secure (Normal) state. Therefore, it shall not
access CPU resources (memory areas, peripherals,
interrupts etc.) belonging to the Secure domain.
endif # ARCH_HAS_TRUSTED_EXECUTION
config HW_STACK_PROTECTION
bool "Hardware Stack Protection"
depends on ARCH_HAS_STACK_PROTECTION
help
Select this option to enable hardware-based platform features to
catch stack overflows when the system is running in privileged
mode. If CONFIG_USERSPACE is not enabled, the system is always
running in privileged mode.
Note that this does not necessarily prevent corruption and assertions
about the overall system state when a fault is triggered cannot be
made.
config USERSPACE
bool "User mode threads"
depends on ARCH_HAS_USERSPACE
depends on RUNTIME_ERROR_CHECKS
depends on SRAM_REGION_PERMISSIONS
select THREAD_STACK_INFO
help
When enabled, threads may be created or dropped down to user mode,
which has significantly restricted permissions and must interact
with the kernel via system calls. See Zephyr documentation for more
details about this feature.
If a user thread overflows its stack, this will be caught and the
kernel itself will be shielded from harm. Enabling this option
may or may not catch stack overflows when the system is in
privileged mode or handling a system call; to ensure these are always
caught, enable CONFIG_HW_STACK_PROTECTION.
config PRIVILEGED_STACK_SIZE
int "Size of privileged stack"
default 1024
depends on ARCH_HAS_USERSPACE
help
This option sets the privileged stack region size that will be used
in addition to the user mode thread stack. During normal execution,
this region will be inaccessible from user mode. During system calls,
this region will be utilized by the system call. This value must be
a multiple of the minimum stack alignment.
config KOBJECT_TEXT_AREA
int "Size of kobject text area"
default 512 if COVERAGE_GCOV
default 512 if NO_OPTIMIZATIONS
default 512 if STACK_CANARIES && RISCV
default 256
depends on ARCH_HAS_USERSPACE
help
Size of kernel object text area. Used in linker script.
config KOBJECT_DATA_AREA_RESERVE_EXTRA_PERCENT
int "Reserve extra kobject data area (in percentage)"
default 100
depends on ARCH_HAS_USERSPACE
help
Multiplication factor used to calculate the size of placeholder to
reserve space for kobject metadata hash table. The hash table is
generated via gperf is highly dependent on the absolute addresses of
kobjects which might change between prebuilts. To reserve enough
space for the hash table during final linking passes to keep
kobjects in same place, the size of reserved space is calculated
from the first prebuilt plus additional space calculated with
this percentage (of the kobject data area in first prebuilt).
config KOBJECT_RODATA_AREA_EXTRA_BYTES
int "Reserve extra bytes for kobject rodata area"
default 16
depends on ARCH_HAS_USERSPACE
help
Reserve a few more bytes for the RODATA region for kobject metadata.
This is to account for the uncertainty of tables generated by gperf.
config GEN_PRIV_STACKS
bool
help
Selected if the architecture requires that privilege elevation stacks
be allocated in a separate memory area. This is typical of arches
whose MPUs require regions to be power-of-two aligned/sized.
FIXME: This should be removed and replaced with checks against
CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT, but both ARM and ARC
changes will be necessary for this.
config STACK_GROWS_UP
bool "Stack grows towards higher memory addresses"
help
Select this option if the architecture has upward growing thread
stacks. This is not common.
config NO_UNUSED_STACK_INSPECTION
bool
help
Selected if the architecture will generate a fault if unused stack
memory is examined, which is the region between the current stack
pointer and the deepest available address in the current stack
region.
config MAX_THREAD_BYTES
int "Bytes to use when tracking object thread permissions"
default 2
depends on USERSPACE
help
Every kernel object will have an associated bitfield to store
thread permissions for that object. This controls the size of the
bitfield (in bytes) and imposes a limit on how many threads can
be created in the system.
config DYNAMIC_OBJECTS
bool "Allow kernel objects to be allocated at runtime"
depends on USERSPACE
help
Enabling this option allows for kernel objects to be requested from
the calling thread's resource pool, at a slight cost in performance
due to the supplemental run-time tables required to validate such
objects.
Objects allocated in this way can be freed with a supervisor-only
API call, or when the number of references to that object drops to
zero.
config NOCACHE_MEMORY
bool "Support for uncached memory"
depends on ARCH_HAS_NOCACHE_MEMORY_SUPPORT
help
Add a "nocache" read-write memory section that is configured to
not be cached. This memory section can be used to perform DMA
transfers when cache coherence issues are not optimal or can not
be solved using cache maintenance operations.
menu "Interrupt Configuration"
config DYNAMIC_INTERRUPTS
bool "Enable installation of IRQs at runtime"
help
Enable installation of interrupts at runtime, which will move some
interrupt-related data structures to RAM instead of ROM, and
on some architectures increase code size.
config GEN_ISR_TABLES
bool "Use generated IRQ tables"
help
This option controls whether a platform uses the gen_isr_tables
script to generate its interrupt tables. This mechanism will create
an appropriate hardware vector table and/or software IRQ table.
config GEN_IRQ_VECTOR_TABLE
bool "Generate an interrupt vector table"
default y
depends on GEN_ISR_TABLES
help
This option controls whether a platform using gen_isr_tables
needs an interrupt vector table created. Only disable this if the
platform does not use a vector table at all, or requires the vector
table to be in a format that is not an array of function pointers
indexed by IRQ line. In the latter case, the vector table must be
supplied by the application or architecture code.
config GEN_SW_ISR_TABLE
bool "Generate a software ISR table"
default y
depends on GEN_ISR_TABLES
help
This option controls whether a platform using gen_isr_tables
needs a software ISR table table created. This is an array of struct
_isr_table_entry containing the interrupt service routine and supplied
parameter.
config ARCH_SW_ISR_TABLE_ALIGN
int "Alignment size of a software ISR table"
default 0
depends on GEN_SW_ISR_TABLE
help
This option controls alignment size of generated
_sw_isr_table. Some architecture needs a software ISR table
to be aligned to architecture specific size. The default
size is 0 for no alignment.
config GEN_IRQ_START_VECTOR
int
default 0
depends on GEN_ISR_TABLES
help
On some architectures, part of the vector table may be reserved for
system exceptions and is declared separately from the tables
created by gen_isr_tables.py. When creating these tables, this value
will be subtracted from CONFIG_NUM_IRQS to properly size them.
This is a hidden option which needs to be set per architecture and
left alone.
config IRQ_OFFLOAD
bool "Enable IRQ offload"
depends on TEST
help
Enable irq_offload() API which allows functions to be synchronously
run in interrupt context. Only useful for test cases that need
to validate the correctness of kernel objects in IRQ context.
config EXTRA_EXCEPTION_INFO
bool "Collect extra exception info"
depends on ARCH_HAS_EXTRA_EXCEPTION_INFO
help
This option enables the collection of extra information, such as
register state, when a fault occurs. This information can be useful
to collect for post-mortem analysis and debug of issues.
endmenu # Interrupt configuration
config INIT_ARCH_HW_AT_BOOT
bool "Initialize internal architecture state at boot"
depends on ARCH_SUPPORTS_ARCH_HW_INIT
help
This option instructs Zephyr to force the initialization
of the internal architectural state (for example ARCH-level
HW registers and system control blocks) during boot to
the reset values as specified by the corresponding
architecture manual. The option is useful when the Zephyr
firmware image is chain-loaded, for example, by a debugger
or a bootloader, and we need to guarantee that the internal
states of the architecture core blocks are restored to the
reset values (as specified by the architecture).
Note: the functionality is architecture-specific. For the
implementation details refer to each architecture where
this feature is supported.
endmenu
#
# Architecture Capabilities
#
config ARCH_HAS_SINGLE_THREAD_SUPPORT
bool
config ARCH_HAS_TIMING_FUNCTIONS
bool
config ARCH_HAS_TRUSTED_EXECUTION
bool
config ARCH_HAS_STACK_PROTECTION
bool
config ARCH_HAS_USERSPACE
bool
config ARCH_HAS_EXECUTABLE_PAGE_BIT
bool
config ARCH_HAS_NOCACHE_MEMORY_SUPPORT
bool
config ARCH_HAS_RAMFUNC_SUPPORT
bool
config ARCH_HAS_NESTED_EXCEPTION_DETECTION
bool
config ARCH_SUPPORTS_COREDUMP
bool
config ARCH_SUPPORTS_ARCH_HW_INIT
bool
config ARCH_HAS_EXTRA_EXCEPTION_INFO
bool
config ARCH_HAS_GDBSTUB
bool
config ARCH_HAS_COHERENCE
bool
help
When selected, the architecture supports the
arch_mem_coherent() API and can link into incoherent/cached
memory using the ".cached" linker section.
config ARCH_HAS_THREAD_LOCAL_STORAGE
bool
#
# Other architecture related options
#
config ARCH_HAS_THREAD_ABORT
bool
#
# Hidden CPU family configs
#
config CPU_HAS_TEE
bool
help
This option is enabled when the CPU has support for Trusted
Execution Environment (e.g. when it has a security attribution
unit).
config CPU_HAS_DCLS
bool
help
This option is enabled when the processor hardware is configured in
Dual-redundant Core Lock-step (DCLS) topology.
config CPU_HAS_FPU
bool
help
This option is enabled when the CPU has hardware floating point
unit.
config CPU_HAS_FPU_DOUBLE_PRECISION
bool
select CPU_HAS_FPU
help
When enabled, this indicates that the CPU has a double floating point
precision unit.
config CPU_HAS_MPU
bool
help
This option is enabled when the CPU has a Memory Protection Unit (MPU).
config CPU_HAS_MMU
bool
help
This hidden option is selected when the CPU has a Memory Management Unit
(MMU).
config ARCH_HAS_DEMAND_PAGING
bool
help
This hidden configuration should be selected by the architecture if
demand paging is supported.
config ARCH_HAS_RESERVED_PAGE_FRAMES
bool
help
This hidden configuration should be selected by the architecture if
certain RAM page frames need to be marked as reserved and never used for
memory mappings. The architecture will need to implement
arch_reserved_pages_update().
config ARCH_MAPS_ALL_RAM
bool
help
This hidden option is selected by the architecture to inform the kernel
that all RAM is mapped at boot, and not just the bounds of the Zephyr image.
If RAM starts at 0x0, the first page must remain un-mapped to catch NULL
pointer dereferences. With this enabled, the kernel will not assume that
virtual memory addresses past the kernel image are available for mappings,
but instead takes into account an entire RAM mapping instead.
This is typically set by architectures which need direct access to all memory.
It is the architecture's responsibility to mark reserved memory regions
as such in arch_reserved_pages_update().
Although the kernel will not disturb this RAM mapping by re-mapping the associated
virtual addresses elsewhere, this is limited to only management of the
virtual address space. The kernel's page frame ontology will not consider
this mapping at all; non-kernel pages will be considered free (unless marked
as reserved) and Z_PAGE_FRAME_MAPPED will not be set.
menuconfig MMU
bool "Enable MMU features"
depends on CPU_HAS_MMU
help
This option is enabled when the CPU's memory management unit is active
and the arch_mem_map() API is available.
if MMU
config MMU_PAGE_SIZE
hex "Size of smallest granularity MMU page"
default 0x1000
help
Size of memory pages. Varies per MMU but 4K is common. For MMUs that
support multiple page sizes, put the smallest one here.
config KERNEL_VM_BASE
hex "Virtual address space base address"
default $(dt_chosen_reg_addr_hex,$(DT_CHOSEN_Z_SRAM))
help
Define the base of the kernel's address space.
By default, this is the same as the DT_CHOSEN_Z_SRAM physical base SRAM
address from DTS, in which case RAM will be identity-mapped. Some
architectures may require RAM to be mapped in this way; they may have
just one RAM region and doing this makes linking much simpler, as
at least when the kernel boots all virtual RAM addresses are the same
as their physical address (demand paging at runtime may later modify
this for non-pinned page frames).
Otherwise, if RAM isn't identity-mapped:
1. It is the architecture's responsibility to transition the
instruction pointer to virtual addresses at early boot before
entering the kernel at z_cstart().
2. The underlying architecture may impose constraints on the bounds of
the kernel's address space, such as not overlapping physical RAM
regions if RAM is not identity-mapped, or the virtual and physical
base addresses being aligned to some common value (which allows
double-linking of paging structures to make the instruction pointer
transition simpler).
Zephyr does not implement a split address space and if multiple
page tables are in use, they all have the same virtual-to-physical
mappings (with potentially different permissions).
config KERNEL_VM_OFFSET
hex "Kernel offset within address space"
default 0
help
Offset that the kernel image begins within its address space,
if this is not the same offset from the beginning of RAM.
Some care may need to be taken in selecting this value. In certain
build-time cases, or when a physical address cannot be looked up
in page tables, the equation:
virt = phys + ((KERNEL_VM_BASE + KERNEL_VM_OFFSET) -
(SRAM_BASE_ADDRESS + SRAM_OFFSET))
Will be used to convert between physical and virtual addresses for
memory that is mapped at boot.
This uncommon and is only necessary if the beginning of VM and
physical memory have dissimilar alignment.
config KERNEL_VM_SIZE
hex "Size of kernel address space in bytes"
default 0x800000
help
Size of the kernel's address space. Constraining this helps control
how much total memory can be used for page tables.
The difference between KERNEL_VM_BASE and KERNEL_VM_SIZE indicates the
size of the virtual region for runtime memory mappings. This is needed
for mapping driver MMIO regions, as well as special RAM mapping use-cases
such as VSDO pages, memory mapped thread stacks, and anonymous memory
mappings. The kernel itself will be mapped in here as well at boot.
Systems with very large amounts of memory (such as 512M or more)
will want to use a 64-bit build of Zephyr, there are no plans to
implement a notion of "high" memory in Zephyr to work around physical
RAM size larger than the defined bounds of the virtual address space.
menuconfig DEMAND_PAGING
bool "Enable demand paging [EXPERIMENTAL]"
depends on ARCH_HAS_DEMAND_PAGING
help
Enable demand paging. Requires architecture support in how the kernel
is linked and the implementation of an eviction algorithm and a
backing store for evicted pages.
if DEMAND_PAGING
config DEMAND_PAGING_ALLOW_IRQ
bool "Allow interrupts during page-ins/outs"
help
Allow interrupts to be serviced while pages are being evicted or
retrieved from the backing store. This is much better for system
latency, but any code running in interrupt context that page faults
will cause a kernel panic. Such code must work with exclusively pinned
code and data pages.
The scheduler is still disabled during this operation.
If this option is disabled, the page fault servicing logic
runs with interrupts disabled for the entire operation. However,
ISRs may also page fault.
config DEMAND_PAGING_PAGE_FRAMES_RESERVE
int "Number of page frames reserved for paging"
default 32 if !LINKER_GENERIC_SECTIONS_PRESENT_AT_BOOT
default 0
help
This sets the number of page frames that will be reserved for
paging that do not count towards free memory. This is to
ensure that there are some page frames available for paging
code and data. Otherwise, it would be possible to exhaust
all page frames via anonymous memory mappings.
config DEMAND_PAGING_STATS
bool "Gather Demand Paging Statistics"
help
This enables gathering various statistics related to demand paging,
e.g. number of pagefaults. This is useful for tuning eviction
algorithms and optimizing backing store.
Should say N in production system as this is not without cost.
config DEMAND_PAGING_STATS_USING_TIMING_FUNCTIONS
bool "Use Timing Functions to Gather Demand Paging Statistics"
select TIMING_FUNCTIONS_NEED_AT_BOOT
help
Use timing functions to gather various demand paging statistics.
config DEMAND_PAGING_THREAD_STATS
bool "Gather per Thread Demand Paging Statistics"
depends on DEMAND_PAGING_STATS
help
This enables gathering per thread statistics related to demand
paging.
Should say N in production system as this is not without cost.
config DEMAND_PAGING_TIMING_HISTOGRAM
bool "Gather Demand Paging Execution Timing Histogram"
depends on DEMAND_PAGING_STATS
help
This gathers the histogram of execution time on page eviction
selection, and backing store page in and page out.
Should say N in production system as this is not without cost.
config DEMAND_PAGING_TIMING_HISTOGRAM_NUM_BINS
int "Number of bins (buckets) in Demand Paging Timing Histogrm"
depends on DEMAND_PAGING_TIMING_HISTOGRAM
default 10
help
Defines the number of bins (buckets) in the histogram used for
gathering execution timing information for demand paging.
This requires k_mem_paging_eviction_histogram_bounds[] and
k_mem_paging_backing_store_histogram_bounds[] to define
the upper bounds for each bin. See kernel/statistics.c for
information.
endif # DEMAND_PAGING
endif # MMU
menuconfig MPU
bool "Enable MPU features"
depends on CPU_HAS_MPU
help
This option, when enabled, indicates to the core kernel that an MPU
is enabled.
if MPU
config MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT
bool
help
This option is enabled when the MPU requires a power of two alignment
and size for MPU regions.
config MPU_REQUIRES_NON_OVERLAPPING_REGIONS
bool
help
This option is enabled when the MPU requires the active (i.e. enabled)
MPU regions to be non-overlapping with each other.
config MPU_GAP_FILLING
bool "Force MPU to be filling in background memory regions"
depends on MPU_REQUIRES_NON_OVERLAPPING_REGIONS
default y if !USERSPACE
help
This Kconfig option instructs the MPU driver to enforce
a full kernel SRAM partitioning, when it programs the
dynamic MPU regions (user thread stack, PRIV stack guard
and application memory domains) during context-switch. We
allow this to be a configurable option, in order to be able
to switch the option off and have an increased number of MPU
regions available for application memory domain programming.
Notes:
An increased number of MPU regions should only be required,
when building with USERSPACE support. As a result, when we
build without USERSPACE support, gap filling should always
be required.
When the option is switched off, access to memory areas not
covered by explicit MPU regions is restricted to privileged
code on an ARCH-specific basis. Refer to ARCH-specific
documentation for more information on how this option is
used.
endif # MPU
config SRAM_REGION_PERMISSIONS
bool "Assign appropriate permissions to kernel areas in SRAM"
depends on MMU || MPU
default y
help
This option indicates that memory protection hardware
is present, enabled, and regions have been configured at boot for memory
ranges within the kernel image.
If this option is turned on, certain areas of the kernel image will
have the following access policies applied for all threads, including
supervisor threads:
1) All program text will be have read-only, execute memory permission
2) All read-only data will have read-only permission, and execution
disabled if the hardware supports it.
3) All other RAM addresses will have read-write permission, and
execution disabled if the hardware supports it.
Options such as USERSPACE or HW_STACK_PROTECTION may additionally
impose additional policies on the memory map, which may be global
or local to the current running thread.
This option may consume additional memory to satisfy memory protection
hardware alignment constraints.
If this option is disabled, the entire kernel will have default memory
access permissions set, typically read/write/execute. It may be desirable
to turn this off on MMU systems which are using the MMU for demand
paging, do not need memory protection, and would rather not use up
RAM for the alignment between regions.
menu "Floating Point Options"
config FPU
bool "Enable floating point unit (FPU)"
depends on CPU_HAS_FPU
help
This option enables the hardware Floating Point Unit (FPU), in order to
support using the floating point registers and instructions.
When this option is enabled, by default, threads may use the floating
point registers only in an exclusive manner, and this usually means that
only one thread may perform floating point operations.
If it is necessary for multiple threads to perform concurrent floating
point operations, the "FPU register sharing" option must be enabled to
preserve the floating point registers across context switches.
Note that this option cannot be selected for the platforms that do not
include a hardware floating point unit; the floating point support for
those platforms is dependent on the availability of the toolchain-
provided software floating point library.
config FPU_SHARING
bool "FPU register sharing"
depends on FPU && MULTITHREADING
help
This option enables preservation of the hardware floating point registers
across context switches to allow multiple threads to perform concurrent
floating point operations.
Note that some compiler configurations may activate a floating point
context by generating FP instructions for any thread, and that
context must be preserved when switching such threads in and out.
The developers can still disable the FP sharing mode in their
application projects, and switch to Unshared FP registers mode,
if it is guaranteed that the image code does not generate FP
instructions outside the single thread context that is allowed
to do so.
endmenu
menu "Cache Options"
config CACHE_MANAGEMENT
bool "Enable cache management features"
help
This links in the cache management functions (for d-cache and i-cache
where possible).
config DCACHE_LINE_SIZE_DETECT
bool "Detect d-cache line size at runtime"
depends on CACHE_MANAGEMENT
help
This option enables querying some architecture-specific hardware for
finding the d-cache line size at the expense of taking more memory and
code and a slightly increased boot time.
If the CPU's d-cache line size is known in advance, disable this option and
manually enter the value for DCACHE_LINE_SIZE or set it in the DT
using the 'd-cache-line-size' property.
config DCACHE_LINE_SIZE
int "d-cache line size" if !DCACHE_LINE_SIZE_DETECT
depends on CACHE_MANAGEMENT
default 0
help
Size in bytes of a CPU d-cache line. If this is set to 0 the value is
obtained from the 'd-cache-line-size' DT property instead if present.
Detect automatically at runtime by selecting DCACHE_LINE_SIZE_DETECT.
config ICACHE_LINE_SIZE_DETECT
bool "Detect i-cache line size at runtime"
depends on CACHE_MANAGEMENT
help
This option enables querying some architecture-specific hardware for
finding the i-cache line size at the expense of taking more memory and
code and a slightly increased boot time.
If the CPU's i-cache line size is known in advance, disable this option and
manually enter the value for ICACHE_LINE_SIZE or set it in the DT
using the 'i-cache-line-size' property.
config ICACHE_LINE_SIZE
int "i-cache line size" if !ICACHE_LINE_SIZE_DETECT
depends on CACHE_MANAGEMENT
default 0
help
Size in bytes of a CPU i-cache line. If this is set to 0 the value is
obtained from the 'i-cache-line-size' DT property instead if present.
Detect automatically at runtime by selecting ICACHE_LINE_SIZE_DETECT.
choice CACHE_TYPE
prompt "Cache type"
depends on CACHE_MANAGEMENT
default HAS_ARCH_CACHE
config HAS_ARCH_CACHE
bool "Integrated cache controller"
help
"Integrade on-core cache controller"
config HAS_EXTERNAL_CACHE
bool "External cache controller"
help
"External cache controller or cache management system"
endchoice
endmenu
config ARCH
string
help
System architecture string.
config SOC
string
help
SoC name which can be found under soc/<arch>/<soc name>.
This option holds the directory name used by the build system to locate
the correct linker and header files for the SoC.
config SOC_SERIES
string
help
SoC series name which can be found under soc/<arch>/<family>/<series>.
This option holds the directory name used by the build system to locate
the correct linker and header files.
config SOC_FAMILY
string
help
SoC family name which can be found under soc/<arch>/<family>.
This option holds the directory name used by the build system to locate
the correct linker and header files.
config BOARD
string
help
This option holds the name of the board and is used to locate the files
related to the board in the source tree (under boards/).
The Board is the first location where we search for a linker.ld file,
if not found we look for the linker file in
soc/<arch>/<family>/<series>
config TOOLCHAIN_HAS_BUILTIN_FFS
bool
default y if !(64BIT && RISCV)
help
Hidden option to signal that toolchain has __builtin_ffs*().