zephyr/include/toolchain/gcc.h

585 lines
17 KiB
C

/*
* Copyright (c) 2010-2014,2017 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_TOOLCHAIN_GCC_H_
#define ZEPHYR_INCLUDE_TOOLCHAIN_GCC_H_
/**
* @file
* @brief GCC toolchain abstraction
*
* Macros to abstract compiler capabilities for GCC toolchain.
*/
/*
* Older versions of GCC do not define __BYTE_ORDER__, so it must be manually
* detected and defined using arch-specific definitions.
*/
#ifndef _LINKER
#ifndef __ORDER_BIG_ENDIAN__
#define __ORDER_BIG_ENDIAN__ (1)
#endif
#ifndef __ORDER_LITTLE_ENDIAN__
#define __ORDER_LITTLE_ENDIAN__ (2)
#endif
#ifndef __BYTE_ORDER__
#if defined(__BIG_ENDIAN__) || defined(__ARMEB__) || \
defined(__THUMBEB__) || defined(__AARCH64EB__) || \
defined(__MIPSEB__) || defined(__TC32EB__)
#define __BYTE_ORDER__ __ORDER_BIG_ENDIAN__
#elif defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || \
defined(__THUMBEL__) || defined(__AARCH64EL__) || \
defined(__MIPSEL__) || defined(__TC32EL__)
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
#else
#error "__BYTE_ORDER__ is not defined and cannot be automatically resolved"
#endif
#endif
/* C++11 has static_assert built in */
#if defined(__cplusplus) && (__cplusplus >= 201103L)
#define BUILD_ASSERT(EXPR, MSG...) static_assert(EXPR, "" MSG)
/*
* GCC 4.6 and higher have the C11 _Static_assert built in, and its
* output is easier to understand than the common BUILD_ASSERT macros.
*/
#elif (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) || \
(__STDC_VERSION__) >= 201100
#define BUILD_ASSERT(EXPR, MSG...) _Static_assert(EXPR, "" MSG)
#else
#define BUILD_ASSERT(EXPR, MSG...)
#endif
#ifdef __cplusplus
#define ZRESTRICT __restrict
#else
#define ZRESTRICT restrict
#endif
#include <toolchain/common.h>
#include <stdbool.h>
#define ALIAS_OF(of) __attribute__((alias(#of)))
#define FUNC_ALIAS(real_func, new_alias, return_type) \
return_type new_alias() ALIAS_OF(real_func)
#if defined(CONFIG_ARCH_POSIX)
#include <arch/posix/posix_trace.h>
/*let's not segfault if this were to happen for some reason*/
#define CODE_UNREACHABLE \
{\
posix_print_error_and_exit("CODE_UNREACHABLE reached from %s:%d\n",\
__FILE__, __LINE__);\
__builtin_unreachable(); \
}
#else
#define CODE_UNREACHABLE __builtin_unreachable()
#endif
#define FUNC_NORETURN __attribute__((__noreturn__))
/* The GNU assembler for Cortex-M3 uses # for immediate values, not
* comments, so the @nobits# trick does not work.
*/
#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
#define _NODATA_SECTION(segment) __attribute__((section(#segment)))
#else
#define _NODATA_SECTION(segment) \
__attribute__((section(#segment ",\"wa\",@nobits#")))
#endif
/* Unaligned access */
#define UNALIGNED_GET(p) \
__extension__ ({ \
struct __attribute__((__packed__)) { \
__typeof__(*(p)) __v; \
} *__p = (__typeof__(__p)) (p); \
__p->__v; \
})
#if __GNUC__ >= 7 && (defined(CONFIG_ARM) || defined(CONFIG_ARM64))
/* Version of UNALIGNED_PUT() which issues a compiler_barrier() after
* the store. It is required to workaround an apparent optimization
* bug in GCC for ARM Cortex-M3 and higher targets, when multiple
* byte, half-word and word stores (strb, strh, str instructions),
* which support unaligned access, can be coalesced into store double
* (strd) instruction, which doesn't support unaligned access (the
* compilers in question do this optimization ignoring __packed__
* attribute).
*/
#define UNALIGNED_PUT(v, p) \
do { \
struct __attribute__((__packed__)) { \
__typeof__(*p) __v; \
} *__p = (__typeof__(__p)) (p); \
__p->__v = (v); \
compiler_barrier(); \
} while (false)
#else
#define UNALIGNED_PUT(v, p) \
do { \
struct __attribute__((__packed__)) { \
__typeof__(*p) __v; \
} *__p = (__typeof__(__p)) (p); \
__p->__v = (v); \
} while (false)
#endif
/* Double indirection to ensure section names are expanded before
* stringification
*/
#define __GENERIC_SECTION(segment) __attribute__((section(STRINGIFY(segment))))
#define Z_GENERIC_SECTION(segment) __GENERIC_SECTION(segment)
#define __GENERIC_DOT_SECTION(segment) \
__attribute__((section("." STRINGIFY(segment))))
#define Z_GENERIC_DOT_SECTION(segment) __GENERIC_DOT_SECTION(segment)
#define ___in_section(a, b, c) \
__attribute__((section("." Z_STRINGIFY(a) \
"." Z_STRINGIFY(b) \
"." Z_STRINGIFY(c))))
#define __in_section(a, b, c) ___in_section(a, b, c)
#define __in_section_unique(seg) ___in_section(seg, __FILE__, __COUNTER__)
#define __in_section_unique_named(seg, name) \
___in_section(seg, __FILE__, name)
/* When using XIP, using '__ramfunc' places a function into RAM instead
* of FLASH. Make sure '__ramfunc' is defined only when
* CONFIG_ARCH_HAS_RAMFUNC_SUPPORT is defined, so that the compiler can
* report an error if '__ramfunc' is used but the architecture does not
* support it.
*/
#if !defined(CONFIG_XIP)
#define __ramfunc
#elif defined(CONFIG_ARCH_HAS_RAMFUNC_SUPPORT)
#define __ramfunc __attribute__((noinline)) \
__attribute__((long_call, section(".ramfunc")))
#endif /* !CONFIG_XIP */
#ifndef __fallthrough
#if __GNUC__ >= 7
#define __fallthrough __attribute__((fallthrough))
#else
#define __fallthrough
#endif /* __GNUC__ >= 7 */
#endif
#ifndef __packed
#define __packed __attribute__((__packed__))
#endif
#ifndef __aligned
#define __aligned(x) __attribute__((__aligned__(x)))
#endif
#define __may_alias __attribute__((__may_alias__))
#ifndef __printf_like
#define __printf_like(f, a) __attribute__((format (printf, f, a)))
#endif
#define __used __attribute__((__used__))
#ifndef __deprecated
#define __deprecated __attribute__((deprecated))
#endif
#ifndef __attribute_const__
#define __attribute_const__ __attribute__((__const__))
#endif
#ifndef __must_check
#define __must_check __attribute__((warn_unused_result))
#endif
#define ARG_UNUSED(x) (void)(x)
#define likely(x) __builtin_expect((bool)!!(x), true)
#define unlikely(x) __builtin_expect((bool)!!(x), false)
#define popcount(x) __builtin_popcount(x)
#ifndef __no_optimization
#define __no_optimization __attribute__((optimize("-O0")))
#endif
#ifndef __weak
#define __weak __attribute__((__weak__))
#endif
#define __unused __attribute__((__unused__))
/* Builtins with availability that depend on the compiler version. */
#if __GNUC__ >= 5
#define HAS_BUILTIN___builtin_add_overflow 1
#define HAS_BUILTIN___builtin_sub_overflow 1
#define HAS_BUILTIN___builtin_mul_overflow 1
#define HAS_BUILTIN___builtin_div_overflow 1
#endif
#if __GNUC__ >= 4
#define HAS_BUILTIN___builtin_clz 1
#define HAS_BUILTIN___builtin_clzl 1
#define HAS_BUILTIN___builtin_clzll 1
#define HAS_BUILTIN___builtin_ctz 1
#define HAS_BUILTIN___builtin_ctzl 1
#define HAS_BUILTIN___builtin_ctzll 1
#endif
/*
* Be *very* careful with these. You cannot filter out __DEPRECATED_MACRO with
* -wno-deprecated, which has implications for -Werror.
*/
/*
* Expands to nothing and generates a warning. Used like
*
* #define FOO __WARN("Please use BAR instead") ...
*
* The warning points to the location where the macro is expanded.
*/
#define __WARN(msg) __WARN1(GCC warning msg)
#define __WARN1(s) _Pragma(#s)
/* Generic message */
#ifndef __DEPRECATED_MACRO
#define __DEPRECATED_MACRO __WARN("Macro is deprecated")
#endif
/* These macros allow having ARM asm functions callable from thumb */
#if defined(_ASMLANGUAGE)
#if defined(CONFIG_ARM)
#if defined(CONFIG_ASSEMBLER_ISA_THUMB2)
#define FUNC_CODE() .thumb;
#define FUNC_INSTR(a)
#else
#define FUNC_CODE() .code 32
#define FUNC_INSTR(a)
#endif /* CONFIG_ASSEMBLER_ISA_THUMB2 */
#else
#define FUNC_CODE()
#define FUNC_INSTR(a)
#endif /* CONFIG_ARM */
#endif /* _ASMLANGUAGE */
/*
* These macros are used to declare assembly language symbols that need
* to be typed properly(func or data) to be visible to the OMF tool.
* So that the build tool could mark them as an entry point to be linked
* correctly. This is an elfism. Use #if 0 for a.out.
*/
#if defined(_ASMLANGUAGE)
#if defined(CONFIG_ARM) || defined(CONFIG_NIOS2) || defined(CONFIG_RISCV) \
|| defined(CONFIG_XTENSA) || defined(CONFIG_ARM64) \
|| defined(CONFIG_MIPS)
#define GTEXT(sym) .global sym; .type sym, %function
#define GDATA(sym) .global sym; .type sym, %object
#define WTEXT(sym) .weak sym; .type sym, %function
#define WDATA(sym) .weak sym; .type sym, %object
#elif defined(CONFIG_ARC)
/*
* Need to use assembly macros because ';' is interpreted as the start of
* a single line comment in the ARC assembler.
*/
.macro glbl_text symbol
.globl \symbol
.type \symbol, %function
.endm
.macro glbl_data symbol
.globl \symbol
.type \symbol, %object
.endm
.macro weak_data symbol
.weak \symbol
.type \symbol, %object
.endm
#define GTEXT(sym) glbl_text sym
#define GDATA(sym) glbl_data sym
#define WDATA(sym) weak_data sym
#else /* !CONFIG_ARM && !CONFIG_ARC */
#define GTEXT(sym) .globl sym; .type sym, @function
#define GDATA(sym) .globl sym; .type sym, @object
#endif
/*
* These macros specify the section in which a given function or variable
* resides.
*
* - SECTION_FUNC allows only one function to reside in a sub-section
* - SECTION_SUBSEC_FUNC allows multiple functions to reside in a sub-section
* This ensures that garbage collection only discards the section
* if all functions in the sub-section are not referenced.
*/
#if defined(CONFIG_ARC)
/*
* Need to use assembly macros because ';' is interpreted as the start of
* a single line comment in the ARC assembler.
*
* Also, '\()' is needed in the .section directive of these macros for
* correct substitution of the 'section' variable.
*/
.macro section_var section, symbol
.section .\section\().\symbol
\symbol :
.endm
.macro section_func section, symbol
.section .\section\().\symbol, "ax"
FUNC_CODE()
PERFOPT_ALIGN
\symbol :
FUNC_INSTR(\symbol)
.endm
.macro section_subsec_func section, subsection, symbol
.section .\section\().\subsection, "ax"
PERFOPT_ALIGN
\symbol :
.endm
#define SECTION_VAR(sect, sym) section_var sect, sym
#define SECTION_FUNC(sect, sym) section_func sect, sym
#define SECTION_SUBSEC_FUNC(sect, subsec, sym) \
section_subsec_func sect, subsec, sym
#else /* !CONFIG_ARC */
#define SECTION_VAR(sect, sym) .section .sect.sym; sym:
#define SECTION_FUNC(sect, sym) \
.section .sect.sym, "ax"; \
FUNC_CODE() \
PERFOPT_ALIGN; sym : \
FUNC_INSTR(sym)
#define SECTION_SUBSEC_FUNC(sect, subsec, sym) \
.section .sect.subsec, "ax"; PERFOPT_ALIGN; sym :
#endif /* CONFIG_ARC */
#endif /* _ASMLANGUAGE */
#if defined(_ASMLANGUAGE)
#if defined(CONFIG_ARM)
#if defined(CONFIG_ASSEMBLER_ISA_THUMB2)
/* '.syntax unified' is a gcc-ism used in thumb-2 asm files */
#define _ASM_FILE_PROLOGUE .text; .syntax unified; .thumb
#else
#define _ASM_FILE_PROLOGUE .text; .code 32
#endif /* CONFIG_ASSEMBLER_ISA_THUMB2 */
#elif defined(CONFIG_ARM64)
#define _ASM_FILE_PROLOGUE .text
#endif /* CONFIG_ARM64 || CONFIG_ARM */
#endif /* _ASMLANGUAGE */
/*
* These macros generate absolute symbols for GCC
*/
/* create an extern reference to the absolute symbol */
#define GEN_OFFSET_EXTERN(name) extern const char name[]
#define GEN_ABS_SYM_BEGIN(name) \
EXTERN_C void name(void); \
void name(void) \
{
#define GEN_ABS_SYM_END }
/*
* Note that GEN_ABSOLUTE_SYM(), depending on the architecture
* and toolchain, may restrict the range of values permitted
* for assignment to the named symbol.
*
* For example, on x86, "value" is interpreated as signed
* 32-bit integer. Passing in an unsigned 32-bit integer
* with MSB set would result in a negative integer.
* Moreover, GCC would error out if an integer larger
* than 2^32-1 is passed as "value".
*/
/*
* GEN_ABSOLUTE_SYM_KCONFIG() is outputted by the build system
* to generate named symbol/value pairs for kconfigs.
*/
#if defined(CONFIG_ARM)
/*
* GNU/ARM backend does not have a proper operand modifier which does not
* produces prefix # followed by value, such as %0 for PowerPC, Intel, and
* MIPS. The workaround performed here is using %B0 which converts
* the value to ~(value). Thus "n"(~(value)) is set in operand constraint
* to output (value) in the ARM specific GEN_OFFSET macro.
*/
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".globl\t" #name "\n\t.equ\t" #name \
",%B0" \
"\n\t.type\t" #name ",%%object" : : "n"(~(value)))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",%object")
#elif defined(CONFIG_X86)
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".globl\t" #name "\n\t.equ\t" #name \
",%c0" \
"\n\t.type\t" #name ",@object" : : "n"(value))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",@object")
#elif defined(CONFIG_ARC) || defined(CONFIG_ARM64)
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".globl\t" #name "\n\t.equ\t" #name \
",%c0" \
"\n\t.type\t" #name ",@object" : : "n"(value))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",@object")
#elif defined(CONFIG_NIOS2) || defined(CONFIG_RISCV) || \
defined(CONFIG_XTENSA) || defined(CONFIG_MIPS)
/* No special prefixes necessary for constants in this arch AFAICT */
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".globl\t" #name "\n\t.equ\t" #name \
",%0" \
"\n\t.type\t" #name ",%%object" : : "n"(value))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",%object")
#elif defined(CONFIG_ARCH_POSIX)
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".globl\t" #name "\n\t.equ\t" #name \
",%c0" \
"\n\t.type\t" #name ",@object" : : "n"(value))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",@object")
#elif defined(CONFIG_SPARC)
#define GEN_ABSOLUTE_SYM(name, value) \
__asm__(".global\t" #name "\n\t.equ\t" #name \
",%0" \
"\n\t.type\t" #name ",#object" : : "n"(value))
#define GEN_ABSOLUTE_SYM_KCONFIG(name, value) \
__asm__(".globl\t" #name \
"\n\t.equ\t" #name "," #value \
"\n\t.type\t" #name ",#object")
#else
#error processor architecture not supported
#endif
#define compiler_barrier() do { \
__asm__ __volatile__ ("" ::: "memory"); \
} while (false)
/** @brief Return larger value of two provided expressions.
*
* Macro ensures that expressions are evaluated only once.
*
* @note Macro has limited usage compared to the standard macro as it cannot be
* used:
* - to generate constant integer, e.g. __aligned(Z_MAX(4,5))
* - static variable, e.g. array like static uint8_t array[Z_MAX(...)];
*/
#define Z_MAX(a, b) ({ \
/* random suffix to avoid naming conflict */ \
__typeof__(a) _value_a_ = (a); \
__typeof__(b) _value_b_ = (b); \
_value_a_ > _value_b_ ? _value_a_ : _value_b_; \
})
/** @brief Return smaller value of two provided expressions.
*
* Macro ensures that expressions are evaluated only once. See @ref Z_MAX for
* macro limitations.
*/
#define Z_MIN(a, b) ({ \
/* random suffix to avoid naming conflict */ \
__typeof__(a) _value_a_ = (a); \
__typeof__(b) _value_b_ = (b); \
_value_a_ < _value_b_ ? _value_a_ : _value_b_; \
})
/** @brief Return a value clamped to a given range.
*
* Macro ensures that expressions are evaluated only once. See @ref Z_MAX for
* macro limitations.
*/
#define Z_CLAMP(val, low, high) ({ \
/* random suffix to avoid naming conflict */ \
__typeof__(val) _value_val_ = (val); \
__typeof__(low) _value_low_ = (low); \
__typeof__(high) _value_high_ = (high); \
(_value_val_ < _value_low_) ? _value_low_ : \
(_value_val_ > _value_high_) ? _value_high_ : \
_value_val_; \
})
/**
* @brief Calculate power of two ceiling for some nonzero value
*
* @param x Nonzero unsigned long value
* @return X rounded up to the next power of two
*/
#ifdef CONFIG_64BIT
#define Z_POW2_CEIL(x) ((1UL << (63U - __builtin_clzl(x))) < x ? \
1UL << (63U - __builtin_clzl(x) + 1U) : \
1UL << (63U - __builtin_clzl(x)))
#else
#define Z_POW2_CEIL(x) ((1UL << (31U - __builtin_clzl(x))) < x ? \
1UL << (31U - __builtin_clzl(x) + 1U) : \
1UL << (31U - __builtin_clzl(x)))
#endif
#endif /* !_LINKER */
#endif /* ZEPHYR_INCLUDE_TOOLCHAIN_GCC_H_ */