220 lines
6.7 KiB
C
220 lines
6.7 KiB
C
/*
|
|
* Copyright 2021 Intel Corporation
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
#ifndef ZEPHYR_INCLUDE_ARCH_XTENSA_CACHE_H_
|
|
#define ZEPHYR_INCLUDE_ARCH_XTENSA_CACHE_H_
|
|
|
|
#include <xtensa/config/core-isa.h>
|
|
#include <toolchain.h>
|
|
#include <sys/util.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define Z_DCACHE_MAX (XCHAL_DCACHE_SIZE / XCHAL_DCACHE_WAYS)
|
|
|
|
#define Z_IS_POW2(x) (((x) != 0) && (((x) & ((x)-1)) == 0))
|
|
|
|
#if XCHAL_DCACHE_SIZE
|
|
BUILD_ASSERT(Z_IS_POW2(XCHAL_DCACHE_LINESIZE));
|
|
BUILD_ASSERT(Z_IS_POW2(Z_DCACHE_MAX));
|
|
#endif
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_flush(void *addr, size_t bytes)
|
|
{
|
|
#if XCHAL_DCACHE_SIZE
|
|
size_t step = XCHAL_DCACHE_LINESIZE;
|
|
size_t first = ROUND_DOWN(addr, step);
|
|
size_t last = ROUND_UP(((long)addr) + bytes, step);
|
|
size_t line;
|
|
|
|
for (line = first; bytes && line < last; line += step) {
|
|
__asm__ volatile("dhwb %0, 0" :: "r"(line));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_flush_inv(void *addr, size_t bytes)
|
|
{
|
|
#if XCHAL_DCACHE_SIZE
|
|
size_t step = XCHAL_DCACHE_LINESIZE;
|
|
size_t first = ROUND_DOWN(addr, step);
|
|
size_t last = ROUND_UP(((long)addr) + bytes, step);
|
|
size_t line;
|
|
|
|
for (line = first; bytes && line < last; line += step) {
|
|
__asm__ volatile("dhwbi %0, 0" :: "r"(line));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_inv(void *addr, size_t bytes)
|
|
{
|
|
#if XCHAL_DCACHE_SIZE
|
|
size_t step = XCHAL_DCACHE_LINESIZE;
|
|
size_t first = ROUND_DOWN(addr, step);
|
|
size_t last = ROUND_UP(((long)addr) + bytes, step);
|
|
size_t line;
|
|
|
|
for (line = first; bytes && line < last; line += step) {
|
|
__asm__ volatile("dhi %0, 0" :: "r"(line));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_inv_all(void)
|
|
{
|
|
z_xtensa_cache_inv(NULL, Z_DCACHE_MAX);
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_flush_all(void)
|
|
{
|
|
z_xtensa_cache_flush(NULL, Z_DCACHE_MAX);
|
|
}
|
|
|
|
static ALWAYS_INLINE void z_xtensa_cache_flush_inv_all(void)
|
|
{
|
|
z_xtensa_cache_flush_inv(NULL, Z_DCACHE_MAX);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_HAS_COHERENCE
|
|
static inline bool arch_mem_coherent(void *ptr)
|
|
{
|
|
size_t addr = (size_t) ptr;
|
|
|
|
return (addr >> 29) == CONFIG_XTENSA_UNCACHED_REGION;
|
|
}
|
|
#endif
|
|
|
|
static ALWAYS_INLINE uint32_t z_xtrpoflip(uint32_t addr, uint32_t rto, uint32_t rfrom)
|
|
{
|
|
/* The math here is all compile-time: when the two regions
|
|
* differ by a power of two, we can convert between them by
|
|
* setting or clearing just one bit. Otherwise it needs two
|
|
* operations.
|
|
*/
|
|
uint32_t rxor = (rto ^ rfrom) << 29;
|
|
|
|
rto <<= 29;
|
|
if (Z_IS_POW2(rxor)) {
|
|
if ((rxor & rto) == 0) {
|
|
return addr & ~rxor;
|
|
} else {
|
|
return addr | rxor;
|
|
}
|
|
} else {
|
|
return (addr & ~(7U << 29)) | rto;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return cached pointer to a RAM address
|
|
*
|
|
* The Xtensa coherence architecture maps addressable RAM twice, in
|
|
* two different 512MB regions whose L1 cache settings can be
|
|
* controlled independently. So for any given pointer, it is possible
|
|
* to convert it to and from a cached version.
|
|
*
|
|
* This function takes a pointer to any addressible object (either in
|
|
* cacheable memory or not) and returns a pointer that can be used to
|
|
* refer to the same memory through the L1 data cache. Data read
|
|
* through the resulting pointer will reflect locally cached values on
|
|
* the current CPU if they exist, and writes will go first into the
|
|
* cache and be written back later.
|
|
*
|
|
* @see arch_xtensa_uncached_ptr()
|
|
*
|
|
* @param ptr A pointer to a valid C object
|
|
* @return A pointer to the same object via the L1 dcache
|
|
*/
|
|
static inline void *arch_xtensa_cached_ptr(void *ptr)
|
|
{
|
|
return (void *)z_xtrpoflip((uint32_t) ptr,
|
|
CONFIG_XTENSA_CACHED_REGION,
|
|
CONFIG_XTENSA_UNCACHED_REGION);
|
|
}
|
|
|
|
/**
|
|
* @brief Return uncached pointer to a RAM address
|
|
*
|
|
* The Xtensa coherence architecture maps addressable RAM twice, in
|
|
* two different 512MB regions whose L1 cache settings can be
|
|
* controlled independently. So for any given pointer, it is possible
|
|
* to convert it to and from a cached version.
|
|
*
|
|
* This function takes a pointer to any addressible object (either in
|
|
* cacheable memory or not) and returns a pointer that can be used to
|
|
* refer to the same memory while bypassing the L1 data cache. Data
|
|
* in the L1 cache will not be inspected nor modified by the access.
|
|
*
|
|
* @see arch_xtensa_cached_ptr()
|
|
*
|
|
* @param ptr A pointer to a valid C object
|
|
* @return A pointer to the same object bypassing the L1 dcache
|
|
*/
|
|
static inline void *arch_xtensa_uncached_ptr(void *ptr)
|
|
{
|
|
return (void *)z_xtrpoflip((uint32_t) ptr,
|
|
CONFIG_XTENSA_UNCACHED_REGION,
|
|
CONFIG_XTENSA_CACHED_REGION);
|
|
}
|
|
|
|
/* Utility to generate an unrolled and optimal[1] code sequence to set
|
|
* the RPO TLB registers (contra the HAL cacheattr macros, which
|
|
* generate larger code and can't be called from C), based on the
|
|
* KERNEL_COHERENCE configuration in use. Selects RPO attribute "2"
|
|
* for regions (including MMIO registers in region zero) which want to
|
|
* bypass L1, "4" for the cached region which wants writeback, and
|
|
* "15" (invalid) elsewhere.
|
|
*
|
|
* Note that on cores that have the "translation" option set, we need
|
|
* to put an identity mapping in the high bits. Also per spec
|
|
* changing the current code region (by definition cached) requires
|
|
* that WITLB be followed by an ISYNC and that both instructions live
|
|
* in the same cache line (two 3-byte instructions fit in an 8-byte
|
|
* aligned region, so that's guaranteed not to cross a cache line
|
|
* boundary).
|
|
*
|
|
* [1] With the sole exception of gcc's infuriating insistence on
|
|
* emitting a precomputed literal for addr + addrincr instead of
|
|
* computing it with a single ADD instruction from values it already
|
|
* has in registers. Explicitly assigning the variables to registers
|
|
* via an attribute works, but then emits needless MOV instructions
|
|
* instead. I tell myself it's just 32 bytes of .text, but... Sigh.
|
|
*/
|
|
#define _REGION_ATTR(r) \
|
|
((r) == 0 ? 2 : \
|
|
((r) == CONFIG_XTENSA_CACHED_REGION ? 4 : \
|
|
((r) == CONFIG_XTENSA_UNCACHED_REGION ? 2 : 15)))
|
|
|
|
#define _SET_ONE_TLB(region) do { \
|
|
uint32_t attr = _REGION_ATTR(region); \
|
|
if (XCHAL_HAVE_XLT_CACHEATTR) { \
|
|
attr |= addr; /* RPO with translation */ \
|
|
} \
|
|
if (region != CONFIG_XTENSA_CACHED_REGION) { \
|
|
__asm__ volatile("wdtlb %0, %1; witlb %0, %1" \
|
|
:: "r"(attr), "r"(addr)); \
|
|
} else { \
|
|
__asm__ volatile("wdtlb %0, %1" \
|
|
:: "r"(attr), "r"(addr)); \
|
|
__asm__ volatile("j 1f; .align 8; 1:"); \
|
|
__asm__ volatile("witlb %0, %1; isync" \
|
|
:: "r"(attr), "r"(addr)); \
|
|
} \
|
|
addr += addrincr; \
|
|
} while (0)
|
|
|
|
#define ARCH_XTENSA_SET_RPO_TLB() do { \
|
|
register uint32_t addr = 0, addrincr = 0x20000000; \
|
|
FOR_EACH(_SET_ONE_TLB, (;), 0, 1, 2, 3, 4, 5, 6, 7); \
|
|
} while (0)
|
|
|
|
#ifdef __cplusplus
|
|
} /* extern "C" */
|
|
#endif
|
|
|
|
#endif /* ZEPHYR_INCLUDE_ARCH_XTENSA_CACHE_H_ */
|