152 lines
4.7 KiB
C
152 lines
4.7 KiB
C
/* hmac.c - TinyCrypt implementation of the HMAC algorithm */
|
|
|
|
/*
|
|
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of Intel Corporation nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <tinycrypt/hmac.h>
|
|
#include <tinycrypt/constants.h>
|
|
#include <tinycrypt/utils.h>
|
|
|
|
static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size)
|
|
{
|
|
const uint8_t inner_pad = (uint8_t) 0x36;
|
|
const uint8_t outer_pad = (uint8_t) 0x5c;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < key_size; ++i) {
|
|
key[i] = inner_pad ^ new_key[i];
|
|
key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i];
|
|
}
|
|
for (; i < TC_SHA256_BLOCK_SIZE; ++i) {
|
|
key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad;
|
|
}
|
|
}
|
|
|
|
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
|
|
unsigned int key_size)
|
|
{
|
|
|
|
/* input sanity check: */
|
|
if (ctx == (TCHmacState_t) 0 ||
|
|
key == (const uint8_t *) 0 ||
|
|
key_size == 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
const uint8_t dummy_key[key_size];
|
|
struct tc_hmac_state_struct dummy_state;
|
|
|
|
if (key_size <= TC_SHA256_BLOCK_SIZE) {
|
|
/*
|
|
* The next three lines consist of dummy calls just to avoid
|
|
* certain timing attacks. Without these dummy calls,
|
|
* adversaries would be able to learn whether the key_size is
|
|
* greater than TC_SHA256_BLOCK_SIZE by measuring the time
|
|
* consumed in this process.
|
|
*/
|
|
(void)tc_sha256_init(&dummy_state.hash_state);
|
|
(void)tc_sha256_update(&dummy_state.hash_state,
|
|
dummy_key,
|
|
key_size);
|
|
(void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE],
|
|
&dummy_state.hash_state);
|
|
|
|
/* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */
|
|
rekey(ctx->key, key, key_size);
|
|
} else {
|
|
(void)tc_sha256_init(&ctx->hash_state);
|
|
(void)tc_sha256_update(&ctx->hash_state, key, key_size);
|
|
(void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE],
|
|
&ctx->hash_state);
|
|
rekey(ctx->key,
|
|
&ctx->key[TC_SHA256_DIGEST_SIZE],
|
|
TC_SHA256_DIGEST_SIZE);
|
|
}
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
int tc_hmac_init(TCHmacState_t ctx)
|
|
{
|
|
|
|
/* input sanity check: */
|
|
if (ctx == (TCHmacState_t) 0 ||
|
|
ctx->key == (uint8_t *) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
(void) tc_sha256_init(&ctx->hash_state);
|
|
(void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE);
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
int tc_hmac_update(TCHmacState_t ctx,
|
|
const void *data,
|
|
unsigned int data_length)
|
|
{
|
|
|
|
/* input sanity check: */
|
|
if (ctx == (TCHmacState_t) 0 ||
|
|
ctx->key == (uint8_t *) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
(void)tc_sha256_update(&ctx->hash_state, data, data_length);
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|
|
|
|
int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx)
|
|
{
|
|
|
|
/* input sanity check: */
|
|
if (tag == (uint8_t *) 0 ||
|
|
taglen != TC_SHA256_DIGEST_SIZE ||
|
|
ctx == (TCHmacState_t) 0 ||
|
|
ctx->key == (uint8_t *) 0) {
|
|
return TC_CRYPTO_FAIL;
|
|
}
|
|
|
|
(void) tc_sha256_final(tag, &ctx->hash_state);
|
|
|
|
(void)tc_sha256_init(&ctx->hash_state);
|
|
(void)tc_sha256_update(&ctx->hash_state,
|
|
&ctx->key[TC_SHA256_BLOCK_SIZE],
|
|
TC_SHA256_BLOCK_SIZE);
|
|
(void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE);
|
|
(void)tc_sha256_final(tag, &ctx->hash_state);
|
|
|
|
/* destroy the current state */
|
|
_set(ctx, 0, sizeof(*ctx));
|
|
|
|
return TC_CRYPTO_SUCCESS;
|
|
}
|