431 lines
12 KiB
C
431 lines
12 KiB
C
/*
|
|
* Copyright (c) 2023 Prevas A/S
|
|
* Copyright (c) 2023 Syslinbit
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_rtc
|
|
|
|
#include <errno.h>
|
|
#include <zephyr/device.h>
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/devicetree.h>
|
|
#include <zephyr/drivers/rtc.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <soc.h>
|
|
#include <stm32_ll_pwr.h>
|
|
#include <stm32_ll_rcc.h>
|
|
#include <stm32_ll_rtc.h>
|
|
#include <stm32_hsem.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
|
|
#include <stdbool.h>
|
|
|
|
LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL);
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT)
|
|
/* subsecond counting is not supported by some STM32L1x MCUs */
|
|
#define HW_SUBSECOND_SUPPORT (0)
|
|
#else
|
|
#define HW_SUBSECOND_SUPPORT (1)
|
|
#endif
|
|
|
|
/* RTC start time: 1st, Jan, 2000 */
|
|
#define RTC_YEAR_REF 2000
|
|
/* struct tm start time: 1st, Jan, 1900 */
|
|
#define TM_YEAR_REF 1900
|
|
|
|
/* Convert part per billion calibration value to a number of clock pulses added or removed each
|
|
* 2^20 clock cycles so it is suitable for the CALR register fields
|
|
*
|
|
* nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125
|
|
*/
|
|
#define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125)
|
|
|
|
/* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles)
|
|
* to part ber billion calibration value
|
|
*
|
|
* ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048
|
|
*/
|
|
#define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048)
|
|
|
|
/* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses
|
|
* added every 2^20 clock cycles
|
|
*/
|
|
#define MAX_CALP (512)
|
|
#define MAX_CALM (511)
|
|
|
|
#define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP)
|
|
#define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM)
|
|
|
|
/* Timeout in microseconds used to wait for flags */
|
|
#define RTC_TIMEOUT 1000000
|
|
|
|
struct rtc_stm32_config {
|
|
uint32_t async_prescaler;
|
|
uint32_t sync_prescaler;
|
|
const struct stm32_pclken *pclken;
|
|
};
|
|
|
|
struct rtc_stm32_data {
|
|
struct k_mutex lock;
|
|
};
|
|
|
|
static int rtc_stm32_configure(const struct device *dev)
|
|
{
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
|
|
int err = 0;
|
|
|
|
uint32_t hour_format = LL_RTC_GetHourFormat(RTC);
|
|
uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC);
|
|
uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC);
|
|
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
/* configuration process requires to stop the RTC counter so do it
|
|
* only if needed to avoid inducing time drift at each reset
|
|
*/
|
|
if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) ||
|
|
(sync_prescaler != cfg->sync_prescaler) ||
|
|
(async_prescaler != cfg->async_prescaler)) {
|
|
ErrorStatus status = LL_RTC_EnterInitMode(RTC);
|
|
|
|
if (status == SUCCESS) {
|
|
LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR);
|
|
LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler);
|
|
LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler);
|
|
} else {
|
|
err = -EIO;
|
|
}
|
|
|
|
LL_RTC_DisableInitMode(RTC);
|
|
}
|
|
|
|
#ifdef RTC_CR_BYPSHAD
|
|
LL_RTC_EnableShadowRegBypass(RTC);
|
|
#endif /* RTC_CR_BYPSHAD */
|
|
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_init(const struct device *dev)
|
|
{
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
struct rtc_stm32_data *data = dev->data;
|
|
|
|
int err = 0;
|
|
|
|
if (!device_is_ready(clk)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Enable RTC bus clock */
|
|
if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) {
|
|
LOG_ERR("clock op failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
k_mutex_init(&data->lock);
|
|
|
|
/* Enable Backup access */
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_EnableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
/* Enable RTC clock source */
|
|
if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) {
|
|
LOG_ERR("clock configure failed\n");
|
|
return -EIO;
|
|
}
|
|
|
|
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
|
|
|
|
LL_RCC_EnableRTC();
|
|
|
|
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
|
|
|
|
err = rtc_stm32_configure(dev);
|
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_DisableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
|
|
uint32_t real_year = timeptr->tm_year + TM_YEAR_REF;
|
|
|
|
int err = 0;
|
|
|
|
if (real_year < RTC_YEAR_REF) {
|
|
/* RTC does not support years before 2000 */
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (timeptr->tm_wday == -1) {
|
|
/* day of the week is expected */
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = k_mutex_lock(&data->lock, K_NO_WAIT);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
LOG_INF("Setting clock");
|
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_EnableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
ErrorStatus status = LL_RTC_EnterInitMode(RTC);
|
|
|
|
if (status != SUCCESS) {
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_DisableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
k_mutex_unlock(&data->lock);
|
|
return -EIO;
|
|
}
|
|
|
|
LL_RTC_DATE_SetYear(RTC, bin2bcd(real_year - RTC_YEAR_REF));
|
|
LL_RTC_DATE_SetMonth(RTC, bin2bcd(timeptr->tm_mon + 1));
|
|
LL_RTC_DATE_SetDay(RTC, bin2bcd(timeptr->tm_mday));
|
|
|
|
if (timeptr->tm_wday == 0) {
|
|
/* sunday (tm_wday = 0) is not represented by the same value in hardware */
|
|
LL_RTC_DATE_SetWeekDay(RTC, LL_RTC_WEEKDAY_SUNDAY);
|
|
} else {
|
|
/* all the other values are consistent with what is expected by hardware */
|
|
LL_RTC_DATE_SetWeekDay(RTC, timeptr->tm_wday);
|
|
}
|
|
|
|
|
|
LL_RTC_TIME_SetHour(RTC, bin2bcd(timeptr->tm_hour));
|
|
LL_RTC_TIME_SetMinute(RTC, bin2bcd(timeptr->tm_min));
|
|
LL_RTC_TIME_SetSecond(RTC, bin2bcd(timeptr->tm_sec));
|
|
|
|
LL_RTC_DisableInitMode(RTC);
|
|
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_DisableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
k_mutex_unlock(&data->lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr)
|
|
{
|
|
struct rtc_stm32_data *data = dev->data;
|
|
|
|
uint32_t rtc_date, rtc_time;
|
|
|
|
#if HW_SUBSECOND_SUPPORT
|
|
const struct rtc_stm32_config *cfg = dev->config;
|
|
uint32_t rtc_subsecond;
|
|
#endif
|
|
|
|
int err = k_mutex_lock(&data->lock, K_NO_WAIT);
|
|
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
if (!LL_RTC_IsActiveFlag_INITS(RTC)) {
|
|
/* INITS flag is set when the calendar has been initialiazed. This flag is
|
|
* reset only on backup domain reset, so it can be read after a system
|
|
* reset to check if the calendar has been initialized.
|
|
*/
|
|
k_mutex_unlock(&data->lock);
|
|
return -ENODATA;
|
|
}
|
|
|
|
do {
|
|
/* read date, time and subseconds and relaunch if a day increment occurred
|
|
* while doing so as it will result in an erroneous result otherwise
|
|
*/
|
|
rtc_date = LL_RTC_DATE_Get(RTC);
|
|
do {
|
|
/* read time and subseconds and relaunch if a second increment occurred
|
|
* while doing so as it will result in an erroneous result otherwise
|
|
*/
|
|
rtc_time = LL_RTC_TIME_Get(RTC);
|
|
#if HW_SUBSECOND_SUPPORT
|
|
rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC);
|
|
#endif
|
|
} while (rtc_time != LL_RTC_TIME_Get(RTC));
|
|
} while (rtc_date != LL_RTC_DATE_Get(RTC));
|
|
|
|
k_mutex_unlock(&data->lock);
|
|
|
|
timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + RTC_YEAR_REF - TM_YEAR_REF;
|
|
/* tm_mon allowed values are 0-11 */
|
|
timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1;
|
|
timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date));
|
|
|
|
int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date);
|
|
|
|
if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) {
|
|
/* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */
|
|
timeptr->tm_wday = 0;
|
|
} else {
|
|
/* all other values are consistent between hardware and rtc_time structure */
|
|
timeptr->tm_wday = hw_wday;
|
|
}
|
|
|
|
timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time));
|
|
timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time));
|
|
timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time));
|
|
|
|
#if HW_SUBSECOND_SUPPORT
|
|
uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L;
|
|
|
|
timeptr->tm_nsec = DIV_ROUND_CLOSEST(temp, cfg->sync_prescaler + 1);
|
|
#else
|
|
timeptr->tm_nsec = 0;
|
|
#endif
|
|
|
|
/* unknown values */
|
|
timeptr->tm_yday = -1;
|
|
timeptr->tm_isdst = -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_RTC_CALIBRATION
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
|
|
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
|
|
static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
/* Note : calibration is considered here to be ppb value to apply
|
|
* on clock period (not frequency) but with an opposite sign
|
|
*/
|
|
|
|
if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) {
|
|
/* out of supported range */
|
|
return -EINVAL;
|
|
}
|
|
|
|
int32_t nb_pulses = PPB_TO_NB_PULSES(calibration);
|
|
|
|
/* we tested calibration against supported range
|
|
* so theoretically nb_pulses is also within range
|
|
*/
|
|
__ASSERT_NO_MSG(nb_pulses <= MAX_CALP);
|
|
__ASSERT_NO_MSG(nb_pulses >= -MAX_CALM);
|
|
|
|
uint32_t calp, calm;
|
|
|
|
if (nb_pulses > 0) {
|
|
calp = LL_RTC_CALIB_INSERTPULSE_SET;
|
|
calm = MAX_CALP - nb_pulses;
|
|
} else {
|
|
calp = LL_RTC_CALIB_INSERTPULSE_NONE;
|
|
calm = -nb_pulses;
|
|
}
|
|
|
|
/* wait for recalibration to be ok if a previous recalibration occurred */
|
|
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) {
|
|
return -EIO;
|
|
}
|
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_EnableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
LL_RTC_DisableWriteProtection(RTC);
|
|
|
|
MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm);
|
|
|
|
LL_RTC_EnableWriteProtection(RTC);
|
|
|
|
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
|
|
LL_PWR_DisableBkUpAccess();
|
|
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
|
|
uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR);
|
|
|
|
bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP);
|
|
uint32_t calm = READ_BIT(calr, RTC_CALR_CALM);
|
|
|
|
int32_t nb_pulses = -((int32_t) calm);
|
|
|
|
if (calp_enabled) {
|
|
nb_pulses += MAX_CALP;
|
|
}
|
|
|
|
*calibration = NB_PULSES_TO_PPB(nb_pulses);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_RTC_CALIBRATION */
|
|
|
|
static const struct rtc_driver_api rtc_stm32_driver_api = {
|
|
.set_time = rtc_stm32_set_time,
|
|
.get_time = rtc_stm32_get_time,
|
|
/* RTC_ALARM not supported */
|
|
/* RTC_UPDATE not supported */
|
|
#ifdef CONFIG_RTC_CALIBRATION
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
|
|
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
|
|
.set_calibration = rtc_stm32_set_calibration,
|
|
.get_calibration = rtc_stm32_get_calibration,
|
|
#else
|
|
#error RTC calibration for devices without smooth calibration feature is not supported yet
|
|
#endif
|
|
#endif /* CONFIG_RTC_CALIBRATION */
|
|
};
|
|
|
|
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
|
|
|
|
BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree");
|
|
|
|
static const struct rtc_stm32_config rtc_config = {
|
|
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
|
|
/* prescaler values for LSI @ 32 KHz */
|
|
.async_prescaler = 0x7F,
|
|
.sync_prescaler = 0x00F9,
|
|
#else /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE */
|
|
/* prescaler values for LSE @ 32768 Hz */
|
|
.async_prescaler = 0x7F,
|
|
.sync_prescaler = 0x00FF,
|
|
#endif
|
|
.pclken = rtc_clk,
|
|
};
|
|
|
|
static struct rtc_stm32_data rtc_data;
|
|
|
|
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1,
|
|
CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api);
|