zephyr/drivers/rtc/rtc_ll_stm32.c

431 lines
12 KiB
C

/*
* Copyright (c) 2023 Prevas A/S
* Copyright (c) 2023 Syslinbit
*
* SPDX-License-Identifier: Apache-2.0
*
*/
#define DT_DRV_COMPAT st_stm32_rtc
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/init.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/rtc.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <soc.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_rtc.h>
#include <stm32_hsem.h>
#include <zephyr/logging/log.h>
#include <stdbool.h>
LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL);
#if defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SUBSECOND_SUPPORT)
/* subsecond counting is not supported by some STM32L1x MCUs */
#define HW_SUBSECOND_SUPPORT (0)
#else
#define HW_SUBSECOND_SUPPORT (1)
#endif
/* RTC start time: 1st, Jan, 2000 */
#define RTC_YEAR_REF 2000
/* struct tm start time: 1st, Jan, 1900 */
#define TM_YEAR_REF 1900
/* Convert part per billion calibration value to a number of clock pulses added or removed each
* 2^20 clock cycles so it is suitable for the CALR register fields
*
* nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125
*/
#define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125)
/* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles)
* to part ber billion calibration value
*
* ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048
*/
#define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048)
/* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses
* added every 2^20 clock cycles
*/
#define MAX_CALP (512)
#define MAX_CALM (511)
#define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP)
#define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM)
/* Timeout in microseconds used to wait for flags */
#define RTC_TIMEOUT 1000000
struct rtc_stm32_config {
uint32_t async_prescaler;
uint32_t sync_prescaler;
const struct stm32_pclken *pclken;
};
struct rtc_stm32_data {
struct k_mutex lock;
};
static int rtc_stm32_configure(const struct device *dev)
{
const struct rtc_stm32_config *cfg = dev->config;
int err = 0;
uint32_t hour_format = LL_RTC_GetHourFormat(RTC);
uint32_t sync_prescaler = LL_RTC_GetSynchPrescaler(RTC);
uint32_t async_prescaler = LL_RTC_GetAsynchPrescaler(RTC);
LL_RTC_DisableWriteProtection(RTC);
/* configuration process requires to stop the RTC counter so do it
* only if needed to avoid inducing time drift at each reset
*/
if ((hour_format != LL_RTC_HOURFORMAT_24HOUR) ||
(sync_prescaler != cfg->sync_prescaler) ||
(async_prescaler != cfg->async_prescaler)) {
ErrorStatus status = LL_RTC_EnterInitMode(RTC);
if (status == SUCCESS) {
LL_RTC_SetHourFormat(RTC, LL_RTC_HOURFORMAT_24HOUR);
LL_RTC_SetSynchPrescaler(RTC, cfg->sync_prescaler);
LL_RTC_SetAsynchPrescaler(RTC, cfg->async_prescaler);
} else {
err = -EIO;
}
LL_RTC_DisableInitMode(RTC);
}
#ifdef RTC_CR_BYPSHAD
LL_RTC_EnableShadowRegBypass(RTC);
#endif /* RTC_CR_BYPSHAD */
LL_RTC_EnableWriteProtection(RTC);
return err;
}
static int rtc_stm32_init(const struct device *dev)
{
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
const struct rtc_stm32_config *cfg = dev->config;
struct rtc_stm32_data *data = dev->data;
int err = 0;
if (!device_is_ready(clk)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Enable RTC bus clock */
if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
k_mutex_init(&data->lock);
/* Enable Backup access */
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
/* Enable RTC clock source */
if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) {
LOG_ERR("clock configure failed\n");
return -EIO;
}
z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY);
LL_RCC_EnableRTC();
z_stm32_hsem_unlock(CFG_HW_RCC_SEMID);
err = rtc_stm32_configure(dev);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
return err;
}
static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr)
{
struct rtc_stm32_data *data = dev->data;
uint32_t real_year = timeptr->tm_year + TM_YEAR_REF;
int err = 0;
if (real_year < RTC_YEAR_REF) {
/* RTC does not support years before 2000 */
return -EINVAL;
}
if (timeptr->tm_wday == -1) {
/* day of the week is expected */
return -EINVAL;
}
err = k_mutex_lock(&data->lock, K_NO_WAIT);
if (err) {
return err;
}
LOG_INF("Setting clock");
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
LL_RTC_DisableWriteProtection(RTC);
ErrorStatus status = LL_RTC_EnterInitMode(RTC);
if (status != SUCCESS) {
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
k_mutex_unlock(&data->lock);
return -EIO;
}
LL_RTC_DATE_SetYear(RTC, bin2bcd(real_year - RTC_YEAR_REF));
LL_RTC_DATE_SetMonth(RTC, bin2bcd(timeptr->tm_mon + 1));
LL_RTC_DATE_SetDay(RTC, bin2bcd(timeptr->tm_mday));
if (timeptr->tm_wday == 0) {
/* sunday (tm_wday = 0) is not represented by the same value in hardware */
LL_RTC_DATE_SetWeekDay(RTC, LL_RTC_WEEKDAY_SUNDAY);
} else {
/* all the other values are consistent with what is expected by hardware */
LL_RTC_DATE_SetWeekDay(RTC, timeptr->tm_wday);
}
LL_RTC_TIME_SetHour(RTC, bin2bcd(timeptr->tm_hour));
LL_RTC_TIME_SetMinute(RTC, bin2bcd(timeptr->tm_min));
LL_RTC_TIME_SetSecond(RTC, bin2bcd(timeptr->tm_sec));
LL_RTC_DisableInitMode(RTC);
LL_RTC_EnableWriteProtection(RTC);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
k_mutex_unlock(&data->lock);
return err;
}
static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr)
{
struct rtc_stm32_data *data = dev->data;
uint32_t rtc_date, rtc_time;
#if HW_SUBSECOND_SUPPORT
const struct rtc_stm32_config *cfg = dev->config;
uint32_t rtc_subsecond;
#endif
int err = k_mutex_lock(&data->lock, K_NO_WAIT);
if (err) {
return err;
}
if (!LL_RTC_IsActiveFlag_INITS(RTC)) {
/* INITS flag is set when the calendar has been initialiazed. This flag is
* reset only on backup domain reset, so it can be read after a system
* reset to check if the calendar has been initialized.
*/
k_mutex_unlock(&data->lock);
return -ENODATA;
}
do {
/* read date, time and subseconds and relaunch if a day increment occurred
* while doing so as it will result in an erroneous result otherwise
*/
rtc_date = LL_RTC_DATE_Get(RTC);
do {
/* read time and subseconds and relaunch if a second increment occurred
* while doing so as it will result in an erroneous result otherwise
*/
rtc_time = LL_RTC_TIME_Get(RTC);
#if HW_SUBSECOND_SUPPORT
rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC);
#endif
} while (rtc_time != LL_RTC_TIME_Get(RTC));
} while (rtc_date != LL_RTC_DATE_Get(RTC));
k_mutex_unlock(&data->lock);
timeptr->tm_year = bcd2bin(__LL_RTC_GET_YEAR(rtc_date)) + RTC_YEAR_REF - TM_YEAR_REF;
/* tm_mon allowed values are 0-11 */
timeptr->tm_mon = bcd2bin(__LL_RTC_GET_MONTH(rtc_date)) - 1;
timeptr->tm_mday = bcd2bin(__LL_RTC_GET_DAY(rtc_date));
int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date);
if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) {
/* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */
timeptr->tm_wday = 0;
} else {
/* all other values are consistent between hardware and rtc_time structure */
timeptr->tm_wday = hw_wday;
}
timeptr->tm_hour = bcd2bin(__LL_RTC_GET_HOUR(rtc_time));
timeptr->tm_min = bcd2bin(__LL_RTC_GET_MINUTE(rtc_time));
timeptr->tm_sec = bcd2bin(__LL_RTC_GET_SECOND(rtc_time));
#if HW_SUBSECOND_SUPPORT
uint64_t temp = ((uint64_t)(cfg->sync_prescaler - rtc_subsecond)) * 1000000000L;
timeptr->tm_nsec = DIV_ROUND_CLOSEST(temp, cfg->sync_prescaler + 1);
#else
timeptr->tm_nsec = 0;
#endif
/* unknown values */
timeptr->tm_yday = -1;
timeptr->tm_isdst = -1;
return 0;
}
#ifdef CONFIG_RTC_CALIBRATION
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration)
{
ARG_UNUSED(dev);
/* Note : calibration is considered here to be ppb value to apply
* on clock period (not frequency) but with an opposite sign
*/
if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) {
/* out of supported range */
return -EINVAL;
}
int32_t nb_pulses = PPB_TO_NB_PULSES(calibration);
/* we tested calibration against supported range
* so theoretically nb_pulses is also within range
*/
__ASSERT_NO_MSG(nb_pulses <= MAX_CALP);
__ASSERT_NO_MSG(nb_pulses >= -MAX_CALM);
uint32_t calp, calm;
if (nb_pulses > 0) {
calp = LL_RTC_CALIB_INSERTPULSE_SET;
calm = MAX_CALP - nb_pulses;
} else {
calp = LL_RTC_CALIB_INSERTPULSE_NONE;
calm = -nb_pulses;
}
/* wait for recalibration to be ok if a previous recalibration occurred */
if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) {
return -EIO;
}
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_EnableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
LL_RTC_DisableWriteProtection(RTC);
MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm);
LL_RTC_EnableWriteProtection(RTC);
#if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP)
LL_PWR_DisableBkUpAccess();
#endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */
return 0;
}
static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration)
{
ARG_UNUSED(dev);
uint32_t calr = sys_read32((mem_addr_t) &RTC->CALR);
bool calp_enabled = READ_BIT(calr, RTC_CALR_CALP);
uint32_t calm = READ_BIT(calr, RTC_CALR_CALM);
int32_t nb_pulses = -((int32_t) calm);
if (calp_enabled) {
nb_pulses += MAX_CALP;
}
*calibration = NB_PULSES_TO_PPB(nb_pulses);
return 0;
}
#endif
#endif /* CONFIG_RTC_CALIBRATION */
static const struct rtc_driver_api rtc_stm32_driver_api = {
.set_time = rtc_stm32_set_time,
.get_time = rtc_stm32_get_time,
/* RTC_ALARM not supported */
/* RTC_UPDATE not supported */
#ifdef CONFIG_RTC_CALIBRATION
#if !defined(CONFIG_SOC_SERIES_STM32F2X) && \
!(defined(CONFIG_SOC_SERIES_STM32L1X) && !defined(RTC_SMOOTHCALIB_SUPPORT))
.set_calibration = rtc_stm32_set_calibration,
.get_calibration = rtc_stm32_get_calibration,
#else
#error RTC calibration for devices without smooth calibration feature is not supported yet
#endif
#endif /* CONFIG_RTC_CALIBRATION */
};
static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0);
BUILD_ASSERT(DT_INST_CLOCKS_HAS_IDX(0, 1), "RTC source clock not defined in the device tree");
static const struct rtc_stm32_config rtc_config = {
#if DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSI
/* prescaler values for LSI @ 32 KHz */
.async_prescaler = 0x7F,
.sync_prescaler = 0x00F9,
#else /* DT_INST_CLOCKS_CELL_BY_IDX(0, 1, bus) == STM32_SRC_LSE */
/* prescaler values for LSE @ 32768 Hz */
.async_prescaler = 0x7F,
.sync_prescaler = 0x00FF,
#endif
.pclken = rtc_clk,
};
static struct rtc_stm32_data rtc_data;
DEVICE_DT_INST_DEFINE(0, &rtc_stm32_init, NULL, &rtc_data, &rtc_config, PRE_KERNEL_1,
CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api);