369 lines
7.9 KiB
C
369 lines
7.9 KiB
C
/*
|
|
* Copyright (c) 2018 Nordic Semiconductor ASA
|
|
* Copyright (c) 2017 Exati Tecnologia Ltda.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <entropy.h>
|
|
#include <atomic.h>
|
|
#include <soc.h>
|
|
#include "nrf_rng.h"
|
|
|
|
/*
|
|
* The nRF5 RNG HW has several characteristics that need to be taken
|
|
* into account by the driver to achieve energy efficient generation
|
|
* of entropy.
|
|
*
|
|
* The RNG does not support continuously DMA'ing entropy into RAM,
|
|
* values must be read out by the CPU byte-by-byte. But once started,
|
|
* it will continue to generate bytes until stopped.
|
|
*
|
|
* The generation time for byte 0 after starting generation (with BIAS
|
|
* correction) is:
|
|
*
|
|
* nRF51822 - 677us
|
|
* nRF52810 - 248us
|
|
* nRF52840 - 248us
|
|
*
|
|
* The generation time for byte N >= 1 after starting generation (with
|
|
* BIAS correction) is:
|
|
*
|
|
* nRF51822 - 677us
|
|
* nRF52810 - 120us
|
|
* nRF52840 - 120us
|
|
*
|
|
* Due to the first byte in a stream of bytes being more costly on
|
|
* some platforms a "water system" inspired algorithm is used to
|
|
* ammortize the cost of the first byte.
|
|
*
|
|
* The algorithm will delay generation of entropy until the amount of
|
|
* bytes goes below THRESHOLD, at which point it will generate entropy
|
|
* until the BUF_LEN limit is reached.
|
|
*
|
|
* The entropy level is checked at the end of every consumption of
|
|
* entropy.
|
|
*
|
|
* The algorithm and HW together has these characteristics:
|
|
*
|
|
* Setting a low threshold will highly ammortize the extra 120us cost
|
|
* of the first byte on nRF52.
|
|
*
|
|
* Setting a high threshold will minimize the time spent waiting for
|
|
* entropy.
|
|
*
|
|
* To minimize power consumption the threshold should either be set
|
|
* low or high depending on the HFCLK-usage pattern of other
|
|
* components.
|
|
*
|
|
* If the threshold is set close to the BUF_LEN, and the system
|
|
* happens to anyway be using the HFCLK for several hundred us after
|
|
* entropy is requested there will be no extra current-consumption for
|
|
* keeping clocks running for entropy generation.
|
|
*
|
|
*/
|
|
|
|
struct rand {
|
|
u8_t count;
|
|
u8_t threshold;
|
|
u8_t first;
|
|
u8_t last;
|
|
u8_t rand[0];
|
|
};
|
|
|
|
#define RAND_DEFINE(name, len) u8_t name[sizeof(struct rand) + len] __aligned(4)
|
|
|
|
#define RAND_THREAD_LEN (CONFIG_ENTROPY_NRF5_THR_BUF_LEN + 1)
|
|
#define RAND_ISR_LEN (CONFIG_ENTROPY_NRF5_ISR_BUF_LEN + 1)
|
|
|
|
struct entropy_nrf5_dev_data {
|
|
struct k_sem sem_lock;
|
|
struct k_sem sem_sync;
|
|
|
|
RAND_DEFINE(thr, RAND_THREAD_LEN);
|
|
RAND_DEFINE(isr, RAND_ISR_LEN);
|
|
};
|
|
|
|
#define DEV_DATA(dev) \
|
|
((struct entropy_nrf5_dev_data *)(dev)->driver_data)
|
|
|
|
#pragma GCC push_options
|
|
#if defined(CONFIG_BT_CTLR_FAST_ENC)
|
|
#pragma GCC optimize ("Ofast")
|
|
#endif
|
|
static inline u8_t get(struct rand *rng, u8_t octets, u8_t *rand)
|
|
{
|
|
u8_t first, last, avail, remaining, *d, *s;
|
|
|
|
__ASSERT_NO_MSG(rng);
|
|
|
|
first = rng->first;
|
|
last = rng->last;
|
|
|
|
d = &rand[octets];
|
|
s = &rng->rand[first];
|
|
|
|
if (first <= last) {
|
|
/* copy octets from contiguous memory */
|
|
avail = last - first;
|
|
if (octets < avail) {
|
|
remaining = avail - octets;
|
|
avail = octets;
|
|
} else {
|
|
remaining = 0;
|
|
}
|
|
|
|
first += avail;
|
|
octets -= avail;
|
|
|
|
while (avail--) {
|
|
*(--d) = *s++;
|
|
}
|
|
|
|
rng->first = first;
|
|
} else {
|
|
/* copy octets from split halves - until end of array */
|
|
avail = rng->count - first;
|
|
if (octets < avail) {
|
|
remaining = avail + last - octets;
|
|
avail = octets;
|
|
first += avail;
|
|
} else {
|
|
remaining = last;
|
|
first = 0;
|
|
}
|
|
|
|
octets -= avail;
|
|
|
|
while (avail--) {
|
|
*(--d) = *s++;
|
|
}
|
|
|
|
/* copy from beginning of array - until ring buffer last idx */
|
|
if (octets && last) {
|
|
s = &rng->rand[0];
|
|
|
|
if (octets < last) {
|
|
remaining = last - octets;
|
|
last = octets;
|
|
} else {
|
|
remaining = 0;
|
|
}
|
|
|
|
first = last;
|
|
octets -= last;
|
|
|
|
while (last--) {
|
|
*(--d) = *s++;
|
|
}
|
|
}
|
|
|
|
rng->first = first;
|
|
}
|
|
|
|
if (remaining < rng->threshold) {
|
|
nrf_rng_task_trigger(NRF_RNG_TASK_START);
|
|
}
|
|
|
|
return octets;
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
static int isr(struct rand *rng, bool store)
|
|
{
|
|
u8_t last;
|
|
|
|
if (!rng) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
last = rng->last + 1;
|
|
if (last == rng->count) {
|
|
last = 0;
|
|
}
|
|
|
|
if (last == rng->first) {
|
|
/* this condition should not happen, but due to probable race,
|
|
* new value could be generated before NRF_RNG task is stopped.
|
|
*/
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
if (!store) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
rng->rand[rng->last] = NRF_RNG->VALUE;
|
|
rng->last = last;
|
|
|
|
last = rng->last + 1;
|
|
if (last == rng->count) {
|
|
last = 0;
|
|
}
|
|
|
|
if (last == rng->first) {
|
|
return 0;
|
|
}
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
static void isr_rand(void *arg)
|
|
{
|
|
struct device *device = arg;
|
|
|
|
if (NRF_RNG->EVENTS_VALRDY) {
|
|
struct entropy_nrf5_dev_data *dev_data = DEV_DATA(device);
|
|
int ret;
|
|
|
|
ret = isr((struct rand *)dev_data->isr, true);
|
|
if (ret != -EBUSY) {
|
|
ret = isr((struct rand *)dev_data->thr,
|
|
(ret == -ENOBUFS));
|
|
k_sem_give(&dev_data->sem_sync);
|
|
}
|
|
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
|
|
if (ret != -EBUSY) {
|
|
nrf_rng_task_trigger(NRF_RNG_TASK_STOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init(struct rand *rng, u8_t len, u8_t threshold)
|
|
{
|
|
rng->count = len;
|
|
rng->threshold = threshold;
|
|
rng->first = rng->last = 0;
|
|
}
|
|
|
|
static int entropy_nrf5_get_entropy(struct device *device, u8_t *buf, u16_t len)
|
|
{
|
|
struct entropy_nrf5_dev_data *dev_data = DEV_DATA(device);
|
|
|
|
while (len) {
|
|
u8_t len8;
|
|
|
|
if (len > UINT8_MAX) {
|
|
len8 = UINT8_MAX;
|
|
} else {
|
|
len8 = len;
|
|
}
|
|
len -= len8;
|
|
|
|
while (len8) {
|
|
k_sem_take(&dev_data->sem_lock, K_FOREVER);
|
|
len8 = get((struct rand *)dev_data->thr, len8, buf);
|
|
k_sem_give(&dev_data->sem_lock);
|
|
if (len8) {
|
|
/* Sleep until next interrupt */
|
|
k_sem_take(&dev_data->sem_sync, K_FOREVER);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int entropy_nrf5_get_entropy_isr(struct device *dev, u8_t *buf, u16_t len,
|
|
u32_t flags)
|
|
{
|
|
struct entropy_nrf5_dev_data *dev_data = DEV_DATA(dev);
|
|
u16_t cnt = len;
|
|
|
|
if (!(flags & ENTROPY_BUSYWAIT)) {
|
|
return get((struct rand *)dev_data->isr, len, buf);
|
|
}
|
|
|
|
if (len) {
|
|
u32_t intenset;
|
|
|
|
irq_disable(RNG_IRQn);
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
|
|
intenset = NRF_RNG->INTENSET;
|
|
nrf_rng_int_enable(NRF_RNG_INT_VALRDY_MASK);
|
|
|
|
nrf_rng_task_trigger(NRF_RNG_TASK_START);
|
|
|
|
do {
|
|
while (NRF_RNG->EVENTS_VALRDY == 0) {
|
|
__WFE();
|
|
__SEV();
|
|
__WFE();
|
|
}
|
|
|
|
buf[--len] = NRF_RNG->VALUE;
|
|
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
|
|
NVIC_ClearPendingIRQ(RNG_IRQn);
|
|
} while (len);
|
|
|
|
nrf_rng_task_trigger(NRF_RNG_TASK_STOP);
|
|
|
|
if (!(intenset & RNG_INTENSET_VALRDY_Msk)) {
|
|
nrf_rng_int_disable(NRF_RNG_INT_VALRDY_MASK);
|
|
}
|
|
|
|
NVIC_ClearPendingIRQ(RNG_IRQn);
|
|
|
|
irq_enable(RNG_IRQn);
|
|
}
|
|
|
|
return cnt;
|
|
}
|
|
|
|
static struct entropy_nrf5_dev_data entropy_nrf5_data;
|
|
static int entropy_nrf5_init(struct device *device);
|
|
|
|
static const struct entropy_driver_api entropy_nrf5_api_funcs = {
|
|
.get_entropy = entropy_nrf5_get_entropy,
|
|
.get_entropy_isr = entropy_nrf5_get_entropy_isr
|
|
};
|
|
|
|
DEVICE_AND_API_INIT(entropy_nrf5, CONFIG_ENTROPY_NAME,
|
|
entropy_nrf5_init, &entropy_nrf5_data, NULL,
|
|
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
|
|
&entropy_nrf5_api_funcs);
|
|
|
|
static int entropy_nrf5_init(struct device *device)
|
|
{
|
|
struct entropy_nrf5_dev_data *dev_data = DEV_DATA(device);
|
|
|
|
/* Locking semaphore initialized to 1 (unlocked) */
|
|
k_sem_init(&dev_data->sem_lock, 1, 1);
|
|
/* Synching semaphore */
|
|
k_sem_init(&dev_data->sem_sync, 0, 1);
|
|
|
|
init((struct rand *)dev_data->thr, RAND_THREAD_LEN,
|
|
CONFIG_ENTROPY_NRF5_THR_THRESHOLD);
|
|
init((struct rand *)dev_data->isr, RAND_ISR_LEN,
|
|
CONFIG_ENTROPY_NRF5_ISR_THRESHOLD);
|
|
|
|
/* Enable or disable bias correction */
|
|
if (IS_ENABLED(CONFIG_ENTROPY_NRF5_BIAS_CORRECTION)) {
|
|
NRF_RNG->CONFIG |= RNG_CONFIG_DERCEN_Msk;
|
|
} else {
|
|
NRF_RNG->CONFIG &= ~RNG_CONFIG_DERCEN_Msk;
|
|
}
|
|
|
|
NRF_RNG->EVENTS_VALRDY = 0;
|
|
nrf_rng_int_enable(NRF_RNG_INT_VALRDY_MASK);
|
|
nrf_rng_task_trigger(NRF_RNG_TASK_START);
|
|
|
|
IRQ_CONNECT(NRF5_IRQ_RNG_IRQn, CONFIG_ENTROPY_NRF5_PRI, isr_rand,
|
|
DEVICE_GET(entropy_nrf5), 0);
|
|
irq_enable(NRF5_IRQ_RNG_IRQn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
u8_t entropy_nrf_get_entropy_isr(struct device *dev, u8_t *buf, u8_t len)
|
|
{
|
|
ARG_UNUSED(dev);
|
|
return get((struct rand *)entropy_nrf5_data.isr, len, buf);
|
|
}
|
|
|