zephyr/drivers/timer/apic_timer.c

118 lines
3.1 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/drivers/interrupt_controller/loapic.h>
#include <zephyr/irq.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_TICKLESS_KERNEL), "this is a tickfull driver");
/*
* Overview:
*
* This driver enables the local APIC as the Zephyr system timer. It supports
* legacy ("tickful") mode only. The driver will work with any APIC that has
* the ARAT "always running APIC timer" feature (CPUID 0x06, EAX bit 2).
*
* Configuration:
*
* CONFIG_APIC_TIMER=y enables this timer driver.
* CONFIG_APIC_TIMER_IRQ=<irq> which IRQ to configure for the timer.
* CONFIG_APIC_TIMER_IRQ_PRIORITY=<p> priority for IRQ_CONNECT()
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must contain the frequency seen
* by the local APIC timer block (before it gets to the timer divider).
*/
/* These should be merged into include/drivers/interrupt_controller/loapic.h. */
#define DCR_DIVIDER_MASK 0x0000000F /* divider bits */
#define DCR_DIVIDER 0x0000000B /* divide by 1 */
#define LVT_MODE_MASK 0x00060000 /* timer mode bits */
#define LVT_MODE 0x00020000 /* periodic mode */
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = CONFIG_APIC_TIMER_IRQ;
#endif
#define CYCLES_PER_TICK \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
BUILD_ASSERT(CYCLES_PER_TICK >= 1, "APIC timer: bad CYCLES_PER_TICK");
static volatile uint64_t total_cycles;
static void isr(const void *arg)
{
ARG_UNUSED(arg);
total_cycles += CYCLES_PER_TICK;
sys_clock_announce(1);
}
uint32_t sys_clock_elapsed(void)
{
return 0U;
}
uint64_t sys_clock_cycle_get_64(void)
{
uint32_t ccr_1st, ccr_2nd;
uint64_t cycles;
/*
* We may race with CCR reaching 0 and reloading, and the interrupt
* handler updating total_cycles. Let's make sure we sample everything
* away from this roll-over transition by ensuring consecutive CCR
* values are descending so we're sure the enclosed (volatile)
* total_cycles sample and CCR value are coherent with each other.
*/
do {
ccr_1st = x86_read_loapic(LOAPIC_TIMER_CCR);
cycles = total_cycles;
ccr_2nd = x86_read_loapic(LOAPIC_TIMER_CCR);
} while (ccr_2nd > ccr_1st);
return cycles + (CYCLES_PER_TICK - ccr_2nd);
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)sys_clock_cycle_get_64();
}
static int sys_clock_driver_init(void)
{
uint32_t val;
val = x86_read_loapic(LOAPIC_TIMER_CONFIG); /* set divider */
val &= ~DCR_DIVIDER_MASK;
val |= DCR_DIVIDER;
x86_write_loapic(LOAPIC_TIMER_CONFIG, val);
val = x86_read_loapic(LOAPIC_TIMER); /* set timer mode */
val &= ~LVT_MODE_MASK;
val |= LVT_MODE;
x86_write_loapic(LOAPIC_TIMER, val);
/* remember, wiring up the interrupt will mess with the LVT, too */
IRQ_CONNECT(CONFIG_APIC_TIMER_IRQ,
CONFIG_APIC_TIMER_IRQ_PRIORITY,
isr, 0, 0);
x86_write_loapic(LOAPIC_TIMER_ICR, CYCLES_PER_TICK);
irq_enable(CONFIG_APIC_TIMER_IRQ);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);