zephyr/drivers/spi/spi_ambiq_spid.c

431 lines
13 KiB
C

/*
* Copyright (c) 2024 Ambiq <www.ambiq.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_spid
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_ambiq_spid);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <zephyr/pm/device_runtime.h>
#include <stdlib.h>
#include <errno.h>
#include "spi_context.h"
#include <am_mcu_apollo.h>
#define AMBIQ_SPID_PWRCTRL_MAX_WAIT_US 5
typedef int (*ambiq_spi_pwr_func_t)(void);
struct spi_ambiq_config {
const struct gpio_dt_spec int_gpios;
uint32_t base;
int size;
const struct pinctrl_dev_config *pcfg;
ambiq_spi_pwr_func_t pwr_func;
void (*irq_config_func)(void);
};
struct spi_ambiq_data {
struct spi_context ctx;
am_hal_ios_config_t ios_cfg;
void *ios_handler;
int inst_idx;
struct k_sem spim_wrcmp_sem;
};
#define AMBIQ_SPID_TX_BUFSIZE_MAX 1023
uint8_t ambiq_spid_sram_buffer[AMBIQ_SPID_TX_BUFSIZE_MAX];
#define AMBIQ_SPID_DUMMY_BYTE 0
#define AMBIQ_SPID_DUMMY_LENGTH 16
static uint8_t ambiq_spid_dummy_buffer[2][AMBIQ_SPID_DUMMY_LENGTH];
#define AMBIQ_SPID_WORD_SIZE 8
#define AMBIQ_SPID_FIFO_BASE 0x78
#define AMBIQ_SPID_FIFO_END 0x100
#define AMBIQ_SPID_FIFO_LENGTH (AMBIQ_SPID_FIFO_END - AMBIQ_SPID_FIFO_BASE)
#define AMBIQ_SPID_INT_ERR (AM_HAL_IOS_INT_FOVFL | AM_HAL_IOS_INT_FUNDFL | AM_HAL_IOS_INT_FRDERR)
#define AMBIQ_SPID_XCMP_INT \
(AM_HAL_IOS_INT_XCMPWR | AM_HAL_IOS_INT_XCMPWF | AM_HAL_IOS_INT_XCMPRR | \
AM_HAL_IOS_INT_XCMPRF)
static void spi_ambiq_reset(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
/* cancel timed out transaction */
am_hal_ios_disable(data->ios_handler);
/* NULL config to trigger reconfigure on next xfer */
ctx->config = NULL;
/* signal any thread waiting on sync semaphore */
spi_context_complete(ctx, dev, -ETIMEDOUT);
}
static void spi_ambiq_inform(const struct device *dev)
{
const struct spi_ambiq_config *cfg = dev->config;
/* Inform the controller */
gpio_pin_set_dt(&cfg->int_gpios, 1);
gpio_pin_set_dt(&cfg->int_gpios, 0);
}
static void spi_ambiq_isr(const struct device *dev)
{
uint32_t ui32Status;
struct spi_ambiq_data *data = dev->data;
am_hal_ios_interrupt_status_get(data->ios_handler, false, &ui32Status);
am_hal_ios_interrupt_clear(data->ios_handler, ui32Status);
if (ui32Status & AM_HAL_IOS_INT_XCMPWR) {
k_sem_give(&data->spim_wrcmp_sem);
}
}
static int spi_config(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &(data->ctx);
int ret = 0;
data->ios_cfg.ui32InterfaceSelect = AM_HAL_IOS_USE_SPI;
if (spi_context_configured(ctx, config)) {
/* Already configured. No need to do it again. */
return 0;
}
if (SPI_WORD_SIZE_GET(config->operation) != AMBIQ_SPID_WORD_SIZE) {
LOG_ERR("Word size must be %d", AMBIQ_SPID_WORD_SIZE);
return -ENOTSUP;
}
if ((config->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only supports single mode");
return -ENOTSUP;
}
if (config->operation & SPI_LOCK_ON) {
LOG_ERR("Lock On not supported");
return -ENOTSUP;
}
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("LSB first not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_CPOL) {
if (config->operation & SPI_MODE_CPHA) {
data->ios_cfg.ui32InterfaceSelect |= AM_HAL_IOS_SPIMODE_3;
} else {
data->ios_cfg.ui32InterfaceSelect |= AM_HAL_IOS_SPIMODE_2;
}
} else {
if (config->operation & SPI_MODE_CPHA) {
data->ios_cfg.ui32InterfaceSelect |= AM_HAL_IOS_SPIMODE_1;
} else {
data->ios_cfg.ui32InterfaceSelect |= AM_HAL_IOS_SPIMODE_0;
}
}
if (config->operation & SPI_OP_MODE_MASTER) {
LOG_ERR("Controller mode not supported");
return -ENOTSUP;
}
if (config->operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode not supported");
return -ENOTSUP;
}
if (spi_cs_is_gpio(config)) {
LOG_ERR("CS control via GPIO is not supported");
return -EINVAL;
}
/* Eliminate the "read-only" section, so an external controller can use the
* entire "direct write" section.
*/
data->ios_cfg.ui32ROBase = AMBIQ_SPID_FIFO_BASE;
/* Making the "FIFO" section as big as possible. */
data->ios_cfg.ui32FIFOBase = AMBIQ_SPID_FIFO_BASE;
/* We don't need any RAM space, so extend the FIFO all the way to the end
* of the LRAM.
*/
data->ios_cfg.ui32RAMBase = AMBIQ_SPID_FIFO_END;
/* FIFO Threshold - set to half the size */
data->ios_cfg.ui32FIFOThreshold = AMBIQ_SPID_FIFO_LENGTH >> 1;
data->ios_cfg.pui8SRAMBuffer = ambiq_spid_sram_buffer,
data->ios_cfg.ui32SRAMBufferCap = AMBIQ_SPID_TX_BUFSIZE_MAX,
ctx->config = config;
ret = am_hal_ios_configure(data->ios_handler, &data->ios_cfg);
return ret;
}
static int spi_ambiq_xfer(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
int ret = 0;
uint32_t chunk, num_written, num_read, used_space = 0;
while (1) {
/* First send out all data */
if (spi_context_tx_on(ctx)) {
spi_ambiq_inform(dev);
chunk = (ctx->tx_len > AMBIQ_SPID_TX_BUFSIZE_MAX)
? AMBIQ_SPID_TX_BUFSIZE_MAX
: ctx->tx_len;
am_hal_ios_fifo_space_used(data->ios_handler, &used_space);
/* Controller done reading the last block signalled
* Check if any more data available
*/
if (!used_space) {
if (ctx->tx_buf) {
/* Copy data into FIFO */
ret = am_hal_ios_fifo_write(data->ios_handler,
(uint8_t *)ctx->tx_buf, chunk,
&num_written);
} else {
uint32_t dummy_written = 0;
num_written = 0;
/* Copy dummy into FIFO */
while (chunk) {
uint32_t size = (chunk > AMBIQ_SPID_DUMMY_LENGTH)
? AMBIQ_SPID_DUMMY_LENGTH
: chunk;
ret = am_hal_ios_fifo_write(
data->ios_handler,
ambiq_spid_dummy_buffer[0], size,
&dummy_written);
num_written += dummy_written;
chunk -= dummy_written;
}
}
if (ret != 0) {
LOG_ERR("SPID write error: %d", ret);
goto end;
}
spi_context_update_tx(ctx, 1, num_written);
}
} else if (spi_context_rx_on(ctx)) {
/* Wait for controller write complete interrupt */
(void)k_sem_take(&data->spim_wrcmp_sem, K_FOREVER);
/* Read out the first byte as packet length */
num_read = am_hal_ios_pui8LRAM[0];
uint32_t size, offset = 0;
while (spi_context_rx_on(ctx)) {
/* There's no data in the LRAM any more */
if (!num_read) {
spi_ambiq_inform(dev);
goto end;
}
if (ctx->rx_buf) {
size = MIN(num_read, ctx->rx_len);
/* Read data from LRAM */
memcpy(ctx->rx_buf,
(uint8_t *)&am_hal_ios_pui8LRAM[1 + offset], size);
} else {
size = MIN(num_read, AMBIQ_SPID_DUMMY_LENGTH);
/* Consume data from LRAM */
memcpy(ambiq_spid_dummy_buffer[1],
(uint8_t *)&am_hal_ios_pui8LRAM[1 + offset], size);
}
num_read -= size;
offset += size;
spi_context_update_rx(ctx, 1, size);
}
} else {
break;
}
}
end:
if (ret != 0) {
spi_ambiq_reset(dev);
} else {
spi_context_complete(ctx, dev, ret);
}
return ret;
}
static int spi_ambiq_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
struct spi_ambiq_data *data = dev->data;
int ret;
if (!tx_bufs && !rx_bufs) {
return 0;
}
ret = pm_device_runtime_get(dev);
if (ret < 0) {
LOG_ERR("pm_device_runtime_get failed: %d", ret);
}
/* context setup */
spi_context_lock(&data->ctx, false, NULL, NULL, config);
ret = spi_config(dev, config);
if (ret) {
spi_context_release(&data->ctx, ret);
return ret;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
ret = spi_ambiq_xfer(dev, config);
spi_context_release(&data->ctx, ret);
/* Use async put to avoid useless device suspension/resumption
* when doing consecutive transmission.
*/
ret = pm_device_runtime_put_async(dev, K_MSEC(2));
if (ret < 0) {
LOG_ERR("pm_device_runtime_put failed: %d", ret);
}
return ret;
}
static int spi_ambiq_release(const struct device *dev, const struct spi_config *config)
{
struct spi_ambiq_data *data = dev->data;
if (!spi_context_configured(&data->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_ambiq_driver_api = {
.transceive = spi_ambiq_transceive,
.release = spi_ambiq_release,
};
static int spi_ambiq_init(const struct device *dev)
{
struct spi_ambiq_data *data = dev->data;
const struct spi_ambiq_config *cfg = dev->config;
int ret = 0;
if (AM_HAL_STATUS_SUCCESS !=
am_hal_ios_initialize((cfg->base - IOSLAVE_BASE) / cfg->size, &data->ios_handler)) {
LOG_ERR("Fail to initialize SPID\n");
return -ENXIO;
}
ret = cfg->pwr_func();
ret |= pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Fail to config SPID pins\n");
goto end;
}
memset(ambiq_spid_dummy_buffer[0], AMBIQ_SPID_DUMMY_BYTE, AMBIQ_SPID_DUMMY_LENGTH);
am_hal_ios_interrupt_clear(data->ios_handler, AM_HAL_IOS_INT_ALL);
am_hal_ios_interrupt_enable(data->ios_handler, AMBIQ_SPID_INT_ERR | AM_HAL_IOS_INT_IOINTW |
AMBIQ_SPID_XCMP_INT);
cfg->irq_config_func();
end:
if (ret < 0) {
am_hal_ios_uninitialize(data->ios_handler);
} else {
spi_context_unlock_unconditionally(&data->ctx);
}
return ret;
}
#ifdef CONFIG_PM_DEVICE
static int spi_ambiq_pm_action(const struct device *dev, enum pm_device_action action)
{
struct spi_ambiq_data *data = dev->data;
uint32_t ret;
am_hal_sysctrl_power_state_e status;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
status = AM_HAL_SYSCTRL_WAKE;
break;
case PM_DEVICE_ACTION_SUSPEND:
status = AM_HAL_SYSCTRL_DEEPSLEEP;
break;
default:
return -ENOTSUP;
}
ret = am_hal_ios_power_ctrl(data->ios_handler, status, true);
if (ret != AM_HAL_STATUS_SUCCESS) {
LOG_ERR("am_hal_ios_power_ctrl failed: %d", ret);
return -EPERM;
} else {
return 0;
}
}
#endif /* CONFIG_PM_DEVICE */
#define AMBIQ_SPID_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
static int pwr_on_ambiq_spi_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(AMBIQ_SPID_PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static void spi_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_ambiq_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}; \
static struct spi_ambiq_data spi_ambiq_data##n = { \
SPI_CONTEXT_INIT_LOCK(spi_ambiq_data##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_ambiq_data##n, ctx), \
.spim_wrcmp_sem = Z_SEM_INITIALIZER(spi_ambiq_data##n.spim_wrcmp_sem, 0, 1), \
.inst_idx = n}; \
static const struct spi_ambiq_config spi_ambiq_config##n = { \
.int_gpios = GPIO_DT_SPEC_INST_GET(n, int_gpios), \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_config_func = spi_irq_config_func_##n, \
.pwr_func = pwr_on_ambiq_spi_##n}; \
PM_DEVICE_DT_INST_DEFINE(n, spi_ambiq_pm_action); \
DEVICE_DT_INST_DEFINE(n, spi_ambiq_init, PM_DEVICE_DT_INST_GET(n), &spi_ambiq_data##n, \
&spi_ambiq_config##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_SPID_INIT)