zephyr/drivers/pwm/pwm_numaker.c

579 lines
19 KiB
C

/*
* Copyright (c) 2023 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_numaker_pwm
#include <zephyr/kernel.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/pwm.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/clock_control_numaker.h>
#include <zephyr/logging/log.h>
#include <soc.h>
#include <NuMicro.h>
LOG_MODULE_REGISTER(pwm_numaker, CONFIG_PWM_LOG_LEVEL);
/* 11-bit prescaler in Numaker EPWM modules */
#define NUMAKER_PWM_MAX_PRESCALER BIT(11)
#define NUMAKER_PWM_CHANNEL_COUNT 6
#define NUMAKER_PWM_RELOAD_CNT (0xFFFFU)
#define NUMAKER_SYSCLK_FREQ DT_PROP(DT_NODELABEL(sysclk), clock_frequency)
/* EPWM channel 0~5 mask */
#define NUMAKER_PWM_CHANNEL_MASK (0x3FU)
/* Device config */
struct pwm_numaker_config {
/* EPWM base address */
EPWM_T *epwm;
uint32_t prescale;
const struct reset_dt_spec reset;
/* clock configuration */
uint32_t clk_modidx;
uint32_t clk_src;
uint32_t clk_div;
const struct device *clk_dev;
const struct pinctrl_dev_config *pincfg;
void (*irq_config_func)(const struct device *dev);
};
struct pwm_numaker_capture_data {
pwm_capture_callback_handler_t callback;
void *user_data;
/* Only support either one of PWM_CAPTURE_TYPE_PULSE, PWM_CAPTURE_TYPE_PERIOD */
bool pulse_capture;
bool single_mode;
bool is_busy;
uint32_t curr_edge_mode;
uint32_t next_edge_mode;
};
/* Driver context/data */
struct pwm_numaker_data {
uint32_t clock_freq;
uint32_t cycles_per_sec;
#ifdef CONFIG_PWM_CAPTURE
uint32_t overflows;
struct pwm_numaker_capture_data capture[NUMAKER_PWM_CHANNEL_COUNT];
#endif /* CONFIG_PWM_CAPTURE */
};
static void pwm_numaker_configure(const struct device *dev)
{
const struct pwm_numaker_config *cfg = dev->config;
EPWM_T *epwm = cfg->epwm;
/* Disable EPWM channel 0~5 before config */
EPWM_ForceStop(epwm, NUMAKER_PWM_CHANNEL_MASK);
/* Set EPWM default normal polarity as inverse disabled */
epwm->POLCTL &= ~(NUMAKER_PWM_CHANNEL_MASK << EPWM_POLCTL_PINV0_Pos);
}
/* PWM api functions */
static int pwm_numaker_set_cycles(const struct device *dev, uint32_t channel,
uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
EPWM_T *epwm = cfg->epwm;
uint32_t channel_mask = BIT(channel);
LOG_DBG("Channel=0x%x, CAPIEN=0x%x, CAPIF=0x%x", channel, epwm->CAPIEN,
epwm->CAPIF);
/* Set EPWM polarity */
if (flags & PWM_POLARITY_INVERTED) {
epwm->POLCTL |= BIT(EPWM_POLCTL_PINV0_Pos + channel);
} else {
epwm->POLCTL &= ~BIT(EPWM_POLCTL_PINV0_Pos + channel);
}
/* Force disable EPWM channel as while pulse_cycles = 0 */
if (period_cycles == 0U) {
EPWM_Stop(epwm, channel_mask);
EPWM_ForceStop(epwm, channel_mask);
EPWM_DisableOutput(epwm, channel_mask);
return 0;
}
/* Set EPWM channel & output configuration */
EPWM_ConfigOutputChannel(epwm, channel, data->cycles_per_sec / period_cycles,
(100U * pulse_cycles) / period_cycles);
/* Enable EPWM Output path for EPWM channel */
EPWM_EnableOutput(epwm, channel_mask);
/* Enable Timer for EPWM channel */
EPWM_Start(epwm, channel_mask);
LOG_DBG("cycles_per_sec=0x%x, pulse_cycles=0x%x, period_cycles=0x%x",
data->cycles_per_sec, pulse_cycles, period_cycles);
LOG_DBG("CTL1=0x%x, POEN=0x%x, CNTEN=0x%x", epwm->CTL1, epwm->POEN, epwm->CNTEN);
LOG_DBG("Channel=0x%x, CAPIEN=0x%x, CAPIF=0x%x", channel, epwm->CAPIEN, epwm->CAPIF);
return 0;
}
static int pwm_numaker_get_cycles_per_sec(const struct device *dev, uint32_t channel,
uint64_t *cycles)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
ARG_UNUSED(channel);
data->cycles_per_sec = data->clock_freq / (cfg->prescale + 1U);
*cycles = (uint64_t)data->cycles_per_sec;
return 0;
}
#ifdef CONFIG_PWM_CAPTURE
static int pwm_numaker_configure_capture(const struct device *dev, uint32_t channel,
pwm_flags_t flags, pwm_capture_callback_handler_t cb,
void *user_data)
{
struct pwm_numaker_data *data = dev->data;
uint32_t pair = channel;
LOG_DBG("");
data->capture[pair].callback = cb;
data->capture[pair].user_data = user_data;
if (data->capture[pair].is_busy) {
LOG_ERR("Capture already active on this channel %d", pair);
return -EBUSY;
}
if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) {
LOG_ERR("Cannot capture both period and pulse width");
return -ENOTSUP;
}
if ((flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS) {
data->capture[pair].single_mode = false;
} else {
data->capture[pair].single_mode = true;
}
if (flags & PWM_CAPTURE_TYPE_PERIOD) {
data->capture[pair].pulse_capture = false;
if (flags & PWM_POLARITY_INVERTED) {
data->capture[pair].curr_edge_mode = EPWM_CAPTURE_INT_FALLING_LATCH;
data->capture[pair].next_edge_mode = EPWM_CAPTURE_INT_FALLING_LATCH;
} else {
data->capture[pair].curr_edge_mode = EPWM_CAPTURE_INT_RISING_LATCH;
data->capture[pair].next_edge_mode = EPWM_CAPTURE_INT_RISING_LATCH;
}
} else {
data->capture[pair].pulse_capture = true;
if (flags & PWM_POLARITY_INVERTED) {
data->capture[pair].curr_edge_mode = EPWM_CAPTURE_INT_FALLING_LATCH;
data->capture[pair].next_edge_mode = EPWM_CAPTURE_INT_RISING_LATCH;
} else {
data->capture[pair].curr_edge_mode = EPWM_CAPTURE_INT_RISING_LATCH;
data->capture[pair].next_edge_mode = EPWM_CAPTURE_INT_FALLING_LATCH;
}
}
return 0;
}
static int pwm_numaker_enable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
EPWM_T *epwm = cfg->epwm;
uint32_t pair = channel;
uint32_t channel_mask = BIT(channel);
uint32_t unit_time_nsec = (1000000000U / data->cycles_per_sec);
LOG_DBG("");
if (!data->capture[pair].callback) {
LOG_ERR("PWM capture not configured");
return -EINVAL;
}
if (data->capture[pair].is_busy) {
LOG_ERR("Capture already active on this channel %d", pair);
return -EBUSY;
}
data->capture[pair].is_busy = true;
/* Set capture configuration */
EPWM_ConfigCaptureChannel(epwm, channel, unit_time_nsec, 0);
/* Enable Capture Function for EPWM */
EPWM_EnableCapture(epwm, channel_mask);
/* Enable Timer for EPWM */
EPWM_Start(epwm, channel_mask);
EPWM_ClearCaptureIntFlag(epwm, channel,
EPWM_CAPTURE_INT_FALLING_LATCH | EPWM_CAPTURE_INT_RISING_LATCH);
/* EnableInterrupt */
EPWM_EnableCaptureInt(epwm, channel, data->capture[pair].curr_edge_mode);
LOG_DBG("Channel=0x%x, CAPIEN=0x%x, CAPIF=0x%x", channel, epwm->CAPIEN,
epwm->CAPIF);
return 0;
}
static int pwm_numaker_disable_capture(const struct device *dev, uint32_t channel)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
EPWM_T *epwm = cfg->epwm;
uint32_t channel_mask = BIT(channel);
LOG_DBG("");
data->capture[channel].is_busy = false;
EPWM_Stop(epwm, channel_mask);
EPWM_ForceStop(epwm, channel_mask);
EPWM_DisableCapture(epwm, channel_mask);
EPWM_DisableCaptureInt(epwm, channel,
EPWM_CAPTURE_INT_RISING_LATCH | EPWM_CAPTURE_INT_FALLING_LATCH);
EPWM_ClearCaptureIntFlag(epwm, channel,
EPWM_CAPTURE_INT_FALLING_LATCH | EPWM_CAPTURE_INT_RISING_LATCH);
LOG_DBG("CAPIEN = 0x%x\n", epwm->CAPIEN);
return 0;
}
/*
* Get capture cycles between current channel edge until next chnannel edge.
* The capture period counter down count from 0x10000, and auto-reload to 0x10000
*/
static int pwm_numaker_get_cap_cycle(EPWM_T *epwm, uint32_t channel, uint32_t curr_edge,
uint32_t next_edge, uint32_t *cycles)
{
uint16_t curr_cnt;
uint16_t next_cnt;
uint32_t next_if_mask;
uint32_t capif_base;
uint32_t time_out_cnt;
int status = 0;
uint32_t period_reloads = 0;
/* PWM counter is timing critical, to avoid print msg from irq_isr until getting cycles */
LOG_DBG("");
EPWM_ClearPeriodIntFlag(epwm, channel);
capif_base = (next_edge == EPWM_CAPTURE_INT_FALLING_LATCH) ? EPWM_CAPIF_CFLIF0_Pos
: EPWM_CAPIF_CRLIF0_Pos;
next_if_mask = BIT(capif_base + channel);
time_out_cnt = NUMAKER_SYSCLK_FREQ / 2; /* 500 ms time-out */
LOG_DBG("Channel=0x%x, R-Cnt=0x%x, F-Cnt0x%x, CNT-0x%x", channel,
EPWM_GET_CAPTURE_RISING_DATA(epwm, channel),
EPWM_GET_CAPTURE_FALLING_DATA(epwm, channel), epwm->CNT[channel]);
curr_cnt = (curr_edge == EPWM_CAPTURE_INT_FALLING_LATCH)
? EPWM_GET_CAPTURE_FALLING_DATA(epwm, channel)
: (uint16_t)EPWM_GET_CAPTURE_RISING_DATA(epwm, channel);
/* Wait for Capture Next Indicator */
while ((epwm->CAPIF & next_if_mask) == 0) {
if (EPWM_GetPeriodIntFlag(epwm, channel)) {
EPWM_ClearPeriodIntFlag(epwm, channel);
period_reloads++;
}
if (--time_out_cnt == 0) {
status = -EAGAIN;
goto done;
}
}
/* Clear Capture Falling and Rising Indicator */
EPWM_ClearCaptureIntFlag(epwm, channel,
EPWM_CAPTURE_INT_FALLING_LATCH | EPWM_CAPTURE_INT_RISING_LATCH);
/* Get Capture Latch Counter Data */
next_cnt = (next_edge == EPWM_CAPTURE_INT_FALLING_LATCH)
? (uint16_t)EPWM_GET_CAPTURE_FALLING_DATA(epwm, channel)
: (uint16_t)EPWM_GET_CAPTURE_RISING_DATA(epwm, channel);
*cycles = (period_reloads * NUMAKER_PWM_RELOAD_CNT) + curr_cnt - next_cnt;
LOG_DBG("cycles=0x%x, period_reloads=0x%x, CAPIF=0x%x, cur-0x%x ,next-0x%x",
*cycles, period_reloads, epwm->CAPIF, curr_cnt, next_cnt);
done:
return status;
}
static void pwm_numaker_channel_cap(const struct device *dev, EPWM_T *epwm, uint32_t channel)
{
struct pwm_numaker_data *data = dev->data;
struct pwm_numaker_capture_data *capture;
uint32_t cycles = 0;
int status;
EPWM_DisableCaptureInt(epwm, channel, EPWM_CAPTURE_INT_RISING_LATCH |
EPWM_CAPTURE_INT_FALLING_LATCH);
capture = &data->capture[channel];
/* Calculate cycles */
status = pwm_numaker_get_cap_cycle(
epwm, channel, data->capture[channel].curr_edge_mode,
data->capture[channel].next_edge_mode, &cycles);
if (capture->pulse_capture) {
/* For PWM_CAPTURE_TYPE_PULSE */
capture->callback(dev, channel, 0, cycles, status, capture->user_data);
} else {
/* For PWM_CAPTURE_TYPE_PERIOD */
capture->callback(dev, channel, cycles, 0, status, capture->user_data);
}
if (capture->single_mode) {
EPWM_DisableCaptureInt(epwm, channel, EPWM_CAPTURE_INT_RISING_LATCH |
EPWM_CAPTURE_INT_FALLING_LATCH);
data->capture[channel].is_busy = false;
} else {
EPWM_ClearCaptureIntFlag(epwm, channel, EPWM_CAPTURE_INT_FALLING_LATCH |
EPWM_CAPTURE_INT_RISING_LATCH);
EPWM_EnableCaptureInt(epwm, channel, data->capture[channel].curr_edge_mode);
/* data->capture[channel].is_busy = true; */
}
}
static void pwm_numaker_isr(const struct device *dev, uint32_t st_channel, uint32_t end_channel)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
EPWM_T *epwm = cfg->epwm;
struct pwm_numaker_capture_data *capture;
uint32_t int_status;
uint32_t cap_intsts;
int i;
uint32_t int_mask = (BIT(st_channel) | BIT(end_channel));
uint32_t cap_int_rise_mask, cap_int_fall_mask;
uint32_t cap_int_mask =
(EPWM_CAPIF_CFLIF0_Msk << st_channel | EPWM_CAPIF_CRLIF0_Msk << st_channel |
EPWM_CAPIF_CFLIF0_Msk << end_channel | EPWM_CAPIF_CRLIF0_Msk << end_channel);
/* Get Output int status */
int_status = epwm->AINTSTS & int_mask;
/* Clear Output int status */
if (int_status != 0x00) {
epwm->AINTSTS = int_status;
}
/* Get CAP int status */
cap_intsts = epwm->CAPIF & cap_int_mask;
/* PWM counter is timing critical, to avoid print msg from irq_isr
* until getting capture cycles.
*/
LOG_DBG("Channel=0x%x, CAPIEN=0x%x, CAPIF=0x%x, capIntMask=0x%x",
st_channel, epwm->CAPIEN, epwm->CAPIF, cap_int_mask);
if (cap_intsts != 0x00) { /* Capture Interrupt */
/* Clear CAP int status */
epwm->CAPIF = cap_intsts;
/* Rising latch or Falling latch */
for (i = st_channel; i <= end_channel; i++) {
capture = &data->capture[i];
if (capture == NULL) {
continue;
}
cap_int_rise_mask = (EPWM_CAPTURE_INT_RISING_LATCH << i);
cap_int_fall_mask = (EPWM_CAPTURE_INT_FALLING_LATCH << i);
if ((cap_int_rise_mask | cap_int_fall_mask) & cap_intsts) {
pwm_numaker_channel_cap(dev, epwm, i);
}
}
}
}
static void pwm_numaker_p0_isr(const struct device *dev)
{
/* Pair0 service channel 0, 1 */
pwm_numaker_isr(dev, 0, 1);
}
static void pwm_numaker_p1_isr(const struct device *dev)
{
/* Pair1 service channel 2, 3 */
pwm_numaker_isr(dev, 2, 3);
}
static void pwm_numaker_p2_isr(const struct device *dev)
{
/* Pair2 service channel 4, 5 */
pwm_numaker_isr(dev, 4, 5);
}
#endif /* CONFIG_PWM_CAPTURE */
/* PWM driver registration */
static const struct pwm_driver_api pwm_numaker_driver_api = {
.set_cycles = pwm_numaker_set_cycles,
.get_cycles_per_sec = pwm_numaker_get_cycles_per_sec,
#ifdef CONFIG_PWM_CAPTURE
.configure_capture = pwm_numaker_configure_capture,
.enable_capture = pwm_numaker_enable_capture,
.disable_capture = pwm_numaker_disable_capture,
#endif /* CONFIG_PWM_CAPTURE */
};
/* Alternative EPWM clock get rate before support standard clock_control_get_rate */
static int pwm_numaker_clk_get_rate(EPWM_T *epwm, uint32_t *rate)
{
uint32_t clk_src;
uint32_t epwm_clk_src;
if (epwm == EPWM0) {
clk_src = CLK->CLKSEL2 & CLK_CLKSEL2_EPWM0SEL_Msk;
} else if (epwm == EPWM1) {
clk_src = CLK->CLKSEL2 & CLK_CLKSEL2_EPWM1SEL_Msk;
} else {
LOG_ERR("Invalid EPWM node");
return -EINVAL;
}
if (clk_src == 0U) {
/* clock source is from PLL clock */
epwm_clk_src = CLK_GetPLLClockFreq();
} else {
/* clock source is from PCLK */
SystemCoreClockUpdate();
if (epwm == EPWM0) {
epwm_clk_src = CLK_GetPCLK0Freq();
} else { /* (epwm == EPWM1) */
epwm_clk_src = CLK_GetPCLK1Freq();
}
}
*rate = epwm_clk_src;
return 0;
}
static int pwm_numaker_init(const struct device *dev)
{
const struct pwm_numaker_config *cfg = dev->config;
struct pwm_numaker_data *data = dev->data;
EPWM_T *epwm = cfg->epwm;
uint32_t clock_freq;
int err;
struct numaker_scc_subsys scc_subsys;
/* Validate this module's reset object */
if (!device_is_ready(cfg->reset.dev)) {
LOG_ERR("reset controller not ready");
return -ENODEV;
}
SYS_UnlockReg();
/* CLK controller */
memset(&scc_subsys, 0x00, sizeof(scc_subsys));
scc_subsys.subsys_id = NUMAKER_SCC_SUBSYS_ID_PCC;
scc_subsys.pcc.clk_modidx = cfg->clk_modidx;
scc_subsys.pcc.clk_src = cfg->clk_src;
scc_subsys.pcc.clk_div = cfg->clk_div;
/* Equivalent to CLK_EnableModuleClock() */
err = clock_control_on(cfg->clk_dev, (clock_control_subsys_t)&scc_subsys);
if (err != 0) {
goto done;
}
/* Equivalent to CLK_SetModuleClock() */
err = clock_control_configure(cfg->clk_dev, (clock_control_subsys_t)&scc_subsys, NULL);
if (err != 0) {
goto done;
}
/* Not support standard clock_control_get_rate yet */
/* clock_control_get_rate(cfg->clk_dev,(clock_control_subsys_t)&scc_subsys,&clock_freq); */
err = pwm_numaker_clk_get_rate(epwm, &clock_freq);
if (err < 0) {
LOG_ERR("Get EPWM clock rate failure %d", err);
goto done;
}
data->clock_freq = clock_freq;
data->cycles_per_sec = data->clock_freq / (cfg->prescale + 1U);
err = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
LOG_ERR("Failed to apply pinctrl state");
goto done;
}
/* Reset PWM to default state, same as BSP's SYS_ResetModule(id_rst) */
reset_line_toggle_dt(&cfg->reset);
/* Configure PWM device initially */
pwm_numaker_configure(dev);
#ifdef CONFIG_PWM_CAPTURE
/* Enable NVIC */
cfg->irq_config_func(dev);
#endif
done:
SYS_LockReg();
return err;
}
#ifdef CONFIG_PWM_CAPTURE
#define NUMAKER_PWM_IRQ_CONFIG_FUNC(n) \
static void pwm_numaker_irq_config_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, pair0, irq), \
DT_INST_IRQ_BY_NAME(n, pair0, priority), pwm_numaker_p0_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(n, pair0, irq)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, pair1, irq), \
DT_INST_IRQ_BY_NAME(n, pair1, priority), pwm_numaker_p1_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(n, pair1, irq)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(n, pair2, irq), \
DT_INST_IRQ_BY_NAME(n, pair2, priority), pwm_numaker_p2_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(n, pair2, irq)); \
}
#define IRQ_FUNC_INIT(n) .irq_config_func = pwm_numaker_irq_config_##n
#else
#define NUMAKER_PWM_IRQ_CONFIG_FUNC(n)
#define IRQ_FUNC_INIT(n)
#endif
#define NUMAKER_PWM_INIT(inst) \
PINCTRL_DT_INST_DEFINE(inst); \
NUMAKER_PWM_IRQ_CONFIG_FUNC(inst) \
\
static const struct pwm_numaker_config pwm_numaker_cfg_##inst = { \
.epwm = (EPWM_T *)DT_INST_REG_ADDR(inst), \
.prescale = DT_INST_PROP(inst, prescaler), \
.reset = RESET_DT_SPEC_INST_GET(inst), \
.clk_modidx = DT_INST_CLOCKS_CELL(inst, clock_module_index), \
.clk_src = DT_INST_CLOCKS_CELL(inst, clock_source), \
.clk_div = DT_INST_CLOCKS_CELL(inst, clock_divider), \
.clk_dev = DEVICE_DT_GET(DT_PARENT(DT_INST_CLOCKS_CTLR(inst))), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
IRQ_FUNC_INIT(inst)}; \
\
static struct pwm_numaker_data pwm_numaker_data_##inst; \
\
DEVICE_DT_INST_DEFINE(inst, &pwm_numaker_init, NULL, &pwm_numaker_data_##inst, \
&pwm_numaker_cfg_##inst, PRE_KERNEL_1, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &pwm_numaker_driver_api);
DT_INST_FOREACH_STATUS_OKAY(NUMAKER_PWM_INIT)