436 lines
12 KiB
C
436 lines
12 KiB
C
/*
|
|
* Copyright (c) 2017 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT nordic_nrf_sw_pwm
|
|
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/pwm.h>
|
|
#include <zephyr/dt-bindings/gpio/gpio.h>
|
|
#include <nrfx_gpiote.h>
|
|
#include <helpers/nrfx_gppi.h>
|
|
#include <hal/nrf_gpio.h>
|
|
#include <hal/nrf_rtc.h>
|
|
#include <hal/nrf_timer.h>
|
|
|
|
#include <zephyr/logging/log.h>
|
|
|
|
LOG_MODULE_REGISTER(pwm_nrf_sw, CONFIG_PWM_LOG_LEVEL);
|
|
|
|
#define GENERATOR_NODE DT_INST_PHANDLE(0, generator)
|
|
#define GENERATOR_CC_NUM DT_PROP(GENERATOR_NODE, cc_num)
|
|
|
|
#if DT_NODE_HAS_COMPAT(GENERATOR_NODE, nordic_nrf_rtc)
|
|
#define USE_RTC 1
|
|
#define GENERATOR_ADDR ((NRF_RTC_Type *) DT_REG_ADDR(GENERATOR_NODE))
|
|
#define GENERATOR_BITS 24
|
|
BUILD_ASSERT(DT_INST_PROP(0, clock_prescaler) == 0,
|
|
"Only clock-prescaler = <0> is supported when used with RTC");
|
|
#else
|
|
#define USE_RTC 0
|
|
#define GENERATOR_ADDR ((NRF_TIMER_Type *) DT_REG_ADDR(GENERATOR_NODE))
|
|
#define GENERATOR_BITS DT_PROP(GENERATOR_NODE, max_bit_width)
|
|
#endif
|
|
|
|
#define PWM_0_MAP_SIZE DT_INST_PROP_LEN(0, channel_gpios)
|
|
|
|
/* One compare channel is needed to set the PWM period, hence +1. */
|
|
#if ((PWM_0_MAP_SIZE + 1) > GENERATOR_CC_NUM)
|
|
#error "Invalid number of PWM channels configured."
|
|
#endif
|
|
|
|
#if defined(PPI_FEATURE_FORKS_PRESENT) || defined(DPPI_PRESENT)
|
|
#define PPI_FORK_AVAILABLE 1
|
|
#else
|
|
#define PPI_FORK_AVAILABLE 0
|
|
#endif
|
|
|
|
/* When RTC is used, one more PPI task endpoint is required for clearing
|
|
* the counter, so when FORK feature is not available, one more PPI channel
|
|
* needs to be used.
|
|
*/
|
|
#if USE_RTC && !PPI_FORK_AVAILABLE
|
|
#define PPI_PER_CH 3
|
|
#else
|
|
#define PPI_PER_CH 2
|
|
#endif
|
|
|
|
struct pwm_config {
|
|
union {
|
|
NRF_RTC_Type *rtc;
|
|
NRF_TIMER_Type *timer;
|
|
};
|
|
nrfx_gpiote_t gpiote[PWM_0_MAP_SIZE];
|
|
uint8_t psel_ch[PWM_0_MAP_SIZE];
|
|
uint8_t initially_inverted;
|
|
uint8_t map_size;
|
|
uint8_t prescaler;
|
|
};
|
|
|
|
struct pwm_data {
|
|
uint32_t period_cycles;
|
|
uint32_t pulse_cycles[PWM_0_MAP_SIZE];
|
|
uint8_t ppi_ch[PWM_0_MAP_SIZE][PPI_PER_CH];
|
|
uint8_t gpiote_ch[PWM_0_MAP_SIZE];
|
|
};
|
|
|
|
static inline NRF_RTC_Type *pwm_config_rtc(const struct pwm_config *config)
|
|
{
|
|
#if USE_RTC
|
|
return config->rtc;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static inline NRF_TIMER_Type *pwm_config_timer(const struct pwm_config *config)
|
|
{
|
|
#if !USE_RTC
|
|
return config->timer;
|
|
#else
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static uint32_t pwm_period_check(struct pwm_data *data, uint8_t map_size,
|
|
uint32_t channel, uint32_t period_cycles,
|
|
uint32_t pulse_cycles)
|
|
{
|
|
uint8_t i;
|
|
|
|
/* allow 0% and 100% duty cycle, as it does not use PWM. */
|
|
if ((pulse_cycles == 0U) || (pulse_cycles == period_cycles)) {
|
|
return 0;
|
|
}
|
|
|
|
/* fail if requested period does not match already running period */
|
|
for (i = 0U; i < map_size; i++) {
|
|
if ((i != channel) &&
|
|
(data->pulse_cycles[i] != 0U) &&
|
|
(period_cycles != data->period_cycles)) {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pwm_nrf_sw_set_cycles(const struct device *dev, uint32_t channel,
|
|
uint32_t period_cycles, uint32_t pulse_cycles,
|
|
pwm_flags_t flags)
|
|
{
|
|
const struct pwm_config *config = dev->config;
|
|
NRF_TIMER_Type *timer = pwm_config_timer(config);
|
|
NRF_RTC_Type *rtc = pwm_config_rtc(config);
|
|
NRF_GPIOTE_Type *gpiote;
|
|
struct pwm_data *data = dev->data;
|
|
uint32_t ppi_mask;
|
|
uint8_t active_level;
|
|
uint8_t psel_ch;
|
|
uint8_t gpiote_ch;
|
|
const uint8_t *ppi_chs;
|
|
int ret;
|
|
|
|
if (channel >= config->map_size) {
|
|
LOG_ERR("Invalid channel: %u.", channel);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check if requested period is allowed while other channels are
|
|
* active.
|
|
*/
|
|
ret = pwm_period_check(data, config->map_size, channel, period_cycles,
|
|
pulse_cycles);
|
|
if (ret) {
|
|
LOG_ERR("Incompatible period");
|
|
return ret;
|
|
}
|
|
|
|
if (USE_RTC) {
|
|
/* pulse_cycles - 1 is written to 24-bit CC */
|
|
if (period_cycles > BIT_MASK(24) + 1) {
|
|
LOG_ERR("Too long period (%u)!", period_cycles);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (GENERATOR_BITS < 32 &&
|
|
period_cycles > BIT_MASK(GENERATOR_BITS)) {
|
|
LOG_ERR("Too long period (%u), adjust PWM prescaler!",
|
|
period_cycles);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
gpiote = config->gpiote[channel].p_reg;
|
|
psel_ch = config->psel_ch[channel];
|
|
gpiote_ch = data->gpiote_ch[channel];
|
|
ppi_chs = data->ppi_ch[channel];
|
|
|
|
LOG_DBG("channel %u, period %u, pulse %u",
|
|
channel, period_cycles, pulse_cycles);
|
|
|
|
/* clear PPI used */
|
|
ppi_mask = BIT(ppi_chs[0]) | BIT(ppi_chs[1]) |
|
|
(PPI_PER_CH > 2 ? BIT(ppi_chs[2]) : 0);
|
|
nrfx_gppi_channels_disable(ppi_mask);
|
|
|
|
active_level = (flags & PWM_POLARITY_INVERTED) ? 0 : 1;
|
|
|
|
/*
|
|
* If the duty cycle is 0% or 100%, there is no need to generate
|
|
* the PWM signal, just keep the output pin in inactive or active
|
|
* state, respectively.
|
|
*/
|
|
if (pulse_cycles == 0 || pulse_cycles == period_cycles) {
|
|
nrf_gpio_pin_write(psel_ch,
|
|
pulse_cycles == 0 ? !active_level
|
|
: active_level);
|
|
|
|
/* clear GPIOTE config */
|
|
nrf_gpiote_te_default(gpiote, gpiote_ch);
|
|
|
|
/* No PWM generation for this channel. */
|
|
data->pulse_cycles[channel] = 0U;
|
|
|
|
/* Check if PWM signal is generated on any channel. */
|
|
for (uint8_t i = 0; i < config->map_size; i++) {
|
|
if (data->pulse_cycles[i]) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* No PWM generation needed, stop the timer. */
|
|
if (USE_RTC) {
|
|
nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_STOP);
|
|
} else {
|
|
nrf_timer_task_trigger(timer, NRF_TIMER_TASK_STOP);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* configure RTC / TIMER */
|
|
if (USE_RTC) {
|
|
nrf_rtc_event_clear(rtc,
|
|
nrf_rtc_compare_event_get(1 + channel));
|
|
nrf_rtc_event_clear(rtc,
|
|
nrf_rtc_compare_event_get(0));
|
|
|
|
/*
|
|
* '- 1' adjusts pulse and period cycles to the fact that CLEAR
|
|
* task event is generated always one LFCLK cycle after period
|
|
* COMPARE value is reached.
|
|
*/
|
|
nrf_rtc_cc_set(rtc, 1 + channel, pulse_cycles - 1);
|
|
nrf_rtc_cc_set(rtc, 0, period_cycles - 1);
|
|
nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_CLEAR);
|
|
} else {
|
|
nrf_timer_event_clear(timer,
|
|
nrf_timer_compare_event_get(1 + channel));
|
|
nrf_timer_event_clear(timer,
|
|
nrf_timer_compare_event_get(0));
|
|
|
|
nrf_timer_cc_set(timer, 1 + channel, pulse_cycles);
|
|
nrf_timer_cc_set(timer, 0, period_cycles);
|
|
nrf_timer_task_trigger(timer, NRF_TIMER_TASK_CLEAR);
|
|
}
|
|
|
|
/* Configure GPIOTE - toggle task with proper initial output value. */
|
|
gpiote->CONFIG[gpiote_ch] =
|
|
(GPIOTE_CONFIG_MODE_Task << GPIOTE_CONFIG_MODE_Pos) |
|
|
((uint32_t)psel_ch << 8) |
|
|
(GPIOTE_CONFIG_POLARITY_Toggle << GPIOTE_CONFIG_POLARITY_Pos) |
|
|
((uint32_t)active_level << GPIOTE_CONFIG_OUTINIT_Pos);
|
|
|
|
/* setup PPI */
|
|
uint32_t pulse_end_event_address, period_end_event_address;
|
|
nrf_gpiote_task_t pulse_end_task, period_end_task;
|
|
#if defined(GPIOTE_FEATURE_SET_PRESENT) && defined(GPIOTE_FEATURE_CLR_PRESENT)
|
|
if (active_level == 0) {
|
|
pulse_end_task = nrf_gpiote_set_task_get(gpiote_ch);
|
|
period_end_task = nrf_gpiote_clr_task_get(gpiote_ch);
|
|
} else {
|
|
pulse_end_task = nrf_gpiote_clr_task_get(gpiote_ch);
|
|
period_end_task = nrf_gpiote_set_task_get(gpiote_ch);
|
|
}
|
|
#else
|
|
pulse_end_task = period_end_task = nrf_gpiote_out_task_get(gpiote_ch);
|
|
#endif
|
|
uint32_t pulse_end_task_address =
|
|
nrf_gpiote_task_address_get(gpiote, pulse_end_task);
|
|
uint32_t period_end_task_address =
|
|
nrf_gpiote_task_address_get(gpiote, period_end_task);
|
|
|
|
if (USE_RTC) {
|
|
uint32_t clear_task_address =
|
|
nrf_rtc_event_address_get(rtc, NRF_RTC_TASK_CLEAR);
|
|
|
|
pulse_end_event_address =
|
|
nrf_rtc_event_address_get(rtc,
|
|
nrf_rtc_compare_event_get(1 + channel));
|
|
period_end_event_address =
|
|
nrf_rtc_event_address_get(rtc,
|
|
nrf_rtc_compare_event_get(0));
|
|
|
|
#if PPI_FORK_AVAILABLE
|
|
nrfx_gppi_fork_endpoint_setup(ppi_chs[1],
|
|
clear_task_address);
|
|
#else
|
|
nrfx_gppi_channel_endpoints_setup(ppi_chs[2],
|
|
period_end_event_address,
|
|
clear_task_address);
|
|
#endif
|
|
} else {
|
|
pulse_end_event_address =
|
|
nrf_timer_event_address_get(timer,
|
|
nrf_timer_compare_event_get(1 + channel));
|
|
period_end_event_address =
|
|
nrf_timer_event_address_get(timer,
|
|
nrf_timer_compare_event_get(0));
|
|
}
|
|
|
|
nrfx_gppi_channel_endpoints_setup(ppi_chs[0],
|
|
pulse_end_event_address,
|
|
pulse_end_task_address);
|
|
nrfx_gppi_channel_endpoints_setup(ppi_chs[1],
|
|
period_end_event_address,
|
|
period_end_task_address);
|
|
nrfx_gppi_channels_enable(ppi_mask);
|
|
|
|
/* start timer, hence PWM */
|
|
if (USE_RTC) {
|
|
nrf_rtc_task_trigger(rtc, NRF_RTC_TASK_START);
|
|
} else {
|
|
nrf_timer_task_trigger(timer, NRF_TIMER_TASK_START);
|
|
}
|
|
|
|
/* store the period and pulse cycles */
|
|
data->period_cycles = period_cycles;
|
|
data->pulse_cycles[channel] = pulse_cycles;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pwm_nrf_sw_get_cycles_per_sec(const struct device *dev,
|
|
uint32_t channel, uint64_t *cycles)
|
|
{
|
|
const struct pwm_config *config = dev->config;
|
|
|
|
if (USE_RTC) {
|
|
/*
|
|
* RTC frequency is derived from 32768Hz source without any
|
|
* prescaler
|
|
*/
|
|
*cycles = 32768UL;
|
|
} else {
|
|
/*
|
|
* HF timer frequency is derived from 16MHz source with a
|
|
* prescaler
|
|
*/
|
|
*cycles = 16000000UL / BIT(config->prescaler);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pwm_driver_api pwm_nrf_sw_drv_api_funcs = {
|
|
.set_cycles = pwm_nrf_sw_set_cycles,
|
|
.get_cycles_per_sec = pwm_nrf_sw_get_cycles_per_sec,
|
|
};
|
|
|
|
static int pwm_nrf_sw_init(const struct device *dev)
|
|
{
|
|
const struct pwm_config *config = dev->config;
|
|
struct pwm_data *data = dev->data;
|
|
NRF_TIMER_Type *timer = pwm_config_timer(config);
|
|
NRF_RTC_Type *rtc = pwm_config_rtc(config);
|
|
|
|
for (uint32_t i = 0; i < config->map_size; i++) {
|
|
nrfx_err_t err;
|
|
|
|
/* Allocate resources. */
|
|
for (uint32_t j = 0; j < PPI_PER_CH; j++) {
|
|
err = nrfx_gppi_channel_alloc(&data->ppi_ch[i][j]);
|
|
if (err != NRFX_SUCCESS) {
|
|
/* Do not free allocated resource. It is a fatal condition,
|
|
* system requires reconfiguration.
|
|
*/
|
|
LOG_ERR("Failed to allocate PPI channel");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
err = nrfx_gpiote_channel_alloc(&config->gpiote[i],
|
|
&data->gpiote_ch[i]);
|
|
if (err != NRFX_SUCCESS) {
|
|
/* Do not free allocated resource. It is a fatal condition,
|
|
* system requires reconfiguration.
|
|
*/
|
|
LOG_ERR("Failed to allocate GPIOTE channel");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Set initial state of the output pins. */
|
|
nrf_gpio_pin_write(config->psel_ch[i],
|
|
(config->initially_inverted & BIT(i)) ? 1 : 0);
|
|
nrf_gpio_cfg_output(config->psel_ch[i]);
|
|
}
|
|
|
|
if (USE_RTC) {
|
|
/* setup RTC */
|
|
nrf_rtc_prescaler_set(rtc, 0);
|
|
nrf_rtc_event_enable(rtc, NRF_RTC_INT_COMPARE0_MASK |
|
|
NRF_RTC_INT_COMPARE1_MASK |
|
|
NRF_RTC_INT_COMPARE2_MASK |
|
|
NRF_RTC_INT_COMPARE3_MASK);
|
|
} else {
|
|
/* setup HF timer */
|
|
nrf_timer_mode_set(timer, NRF_TIMER_MODE_TIMER);
|
|
nrf_timer_prescaler_set(timer, config->prescaler);
|
|
nrf_timer_bit_width_set(timer,
|
|
GENERATOR_BITS == 32 ? NRF_TIMER_BIT_WIDTH_32
|
|
: NRF_TIMER_BIT_WIDTH_16);
|
|
nrf_timer_shorts_enable(timer,
|
|
NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PSEL_AND_COMMA(_node_id, _prop, _idx) \
|
|
NRF_DT_GPIOS_TO_PSEL_BY_IDX(_node_id, _prop, _idx),
|
|
|
|
#define ACTIVE_LOW_BITS(_node_id, _prop, _idx) \
|
|
((DT_GPIO_FLAGS_BY_IDX(_node_id, _prop, _idx) & GPIO_ACTIVE_LOW) \
|
|
? BIT(_idx) : 0) |
|
|
|
|
#define GPIOTE_AND_COMMA(_node_id, _prop, _idx) \
|
|
NRFX_GPIOTE_INSTANCE(NRF_DT_GPIOTE_INST_BY_IDX(_node_id, _prop, _idx)),
|
|
|
|
static const struct pwm_config pwm_nrf_sw_0_config = {
|
|
COND_CODE_1(USE_RTC, (.rtc), (.timer)) = GENERATOR_ADDR,
|
|
.gpiote = {
|
|
DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, GPIOTE_AND_COMMA)
|
|
},
|
|
.psel_ch = {
|
|
DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, PSEL_AND_COMMA)
|
|
},
|
|
.initially_inverted =
|
|
DT_INST_FOREACH_PROP_ELEM(0, channel_gpios, ACTIVE_LOW_BITS) 0,
|
|
.map_size = PWM_0_MAP_SIZE,
|
|
.prescaler = DT_INST_PROP(0, clock_prescaler),
|
|
};
|
|
|
|
static struct pwm_data pwm_nrf_sw_0_data;
|
|
|
|
DEVICE_DT_INST_DEFINE(0,
|
|
pwm_nrf_sw_init,
|
|
NULL,
|
|
&pwm_nrf_sw_0_data,
|
|
&pwm_nrf_sw_0_config,
|
|
POST_KERNEL,
|
|
CONFIG_PWM_INIT_PRIORITY,
|
|
&pwm_nrf_sw_drv_api_funcs);
|