zephyr/drivers/timer/apic_tsc.c

207 lines
5.5 KiB
C

/*
* Copyright (c) 2021 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <device.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <spinlock.h>
#include <drivers/interrupt_controller/loapic.h>
#define IA32_TSC_DEADLINE_MSR 0x6e0
#define IA32_TSC_ADJUST_MSR 0x03b
#define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \
/ (uint64_t) CONFIG_SYS_CLOCK_TICKS_PER_SEC)
struct apic_timer_lvt {
uint8_t vector : 8;
uint8_t unused0 : 8;
uint8_t masked : 1;
enum { ONE_SHOT, PERIODIC, TSC_DEADLINE } mode: 2;
uint32_t unused2 : 13;
};
static struct k_spinlock lock;
static uint64_t last_announce;
static union { uint32_t val; struct apic_timer_lvt lvt; } lvt_reg;
static ALWAYS_INLINE uint64_t rdtsc(void)
{
uint32_t hi, lo;
__asm__ volatile("rdtsc" : "=d"(hi), "=a"(lo));
return lo + (((uint64_t)hi) << 32);
}
static void isr(const void *arg)
{
ARG_UNUSED(arg);
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ticks = (rdtsc() - last_announce) / CYC_PER_TICK;
last_announce += ticks * CYC_PER_TICK;
k_spin_unlock(&lock, key);
sys_clock_announce(ticks);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
sys_clock_set_timeout(1, false);
}
}
static inline void wrmsr(int32_t msr, uint64_t val)
{
uint32_t hi = (uint32_t) (val >> 32);
uint32_t lo = (uint32_t) val;
__asm__ volatile("wrmsr" :: "d"(hi), "a"(lo), "c"(msr));
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint64_t now = rdtsc();
k_spinlock_key_t key = k_spin_lock(&lock);
uint64_t expires = now + MAX(ticks - 1, 0) * CYC_PER_TICK;
expires = last_announce + (((expires - last_announce + CYC_PER_TICK - 1)
/ CYC_PER_TICK) * CYC_PER_TICK);
/* The second condition is to catch the wraparound.
* Interpreted strictly, the IA SDM description of the
* TSC_DEADLINE MSR implies that it will trigger an immediate
* interrupt if we try to set an expiration across the 64 bit
* rollover. Unfortunately there's no way to test that as on
* real hardware it requires more than a century of uptime,
* but this is cheap and safe.
*/
if (ticks == K_TICKS_FOREVER || expires < last_announce) {
expires = UINT64_MAX;
}
wrmsr(IA32_TSC_DEADLINE_MSR, expires);
k_spin_unlock(&lock, key);
}
uint32_t sys_clock_elapsed(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = (rdtsc() - last_announce) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t) rdtsc();
}
uint64_t sys_clock_cycle_get_64(void)
{
return rdtsc();
}
static inline uint32_t timer_irq(void)
{
/* The Zephyr APIC API is... idiosyncratic. The timer is a
* "local vector table" interrupt. These aren't system IRQs
* presented to the IO-APIC, they're indices into a register
* array in the local APIC. By Zephyr convention they come
* after all the external IO-APIC interrupts, but that number
* changes depending on device configuration so we have to
* fetch it at runtime. The timer happens to be the first
* entry in the table.
*/
return z_loapic_irq_base();
}
/* The TSC_ADJUST MSR implements a synchronized offset such that
* multiple CPUs (within a socket, anyway) can synchronize exactly, or
* implement managed timing spaces for guests in a recoverable way,
* etc... We set it to zero on all cores for simplicity, because
* firmware often leaves it in an inconsistent state between cores.
*/
static void clear_tsc_adjust(void)
{
/* But don't touch it on ACRN, where an hypervisor bug
* confuses the APIC emulation and deadline interrupts don't
* arrive.
*/
#ifndef CONFIG_BOARD_ACRN
wrmsr(IA32_TSC_ADJUST_MSR, 0);
#endif
}
void smp_timer_init(void)
{
/* Copy the LVT configuration from CPU0, because IRQ_CONNECT()
* doesn't know how to manage LVT interrupts for anything
* other than the calling/initial CPU. Same fence needed to
* prevent later MSR writes from reordering before the APIC
* configuration write.
*/
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val);
__asm__ volatile("mfence" ::: "memory");
clear_tsc_adjust();
irq_enable(timer_irq());
}
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
__asm__ volatile("cpuid"
: "=b"(*ebx), "=c"(*ecx), "=d"(*edx)
: "a"(*eax), "c"(*ecx));
}
static int sys_clock_driver_init(const struct device *dev)
{
#ifdef CONFIG_ASSERT
uint32_t eax, ebx, ecx, edx;
eax = 1; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((ecx & BIT(24)) != 0, "No TSC Deadline support");
eax = 0x80000007; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((edx & BIT(8)) != 0, "No Invariant TSC support");
eax = 7; ecx = 0;
cpuid(&eax, &ebx, &ecx, &edx);
__ASSERT((ebx & BIT(1)) != 0, "No TSC_ADJUST MSR support");
#endif
clear_tsc_adjust();
/* Timer interrupt number is runtime-fetched, so can't use
* static IRQ_CONNECT()
*/
irq_connect_dynamic(timer_irq(), CONFIG_APIC_TIMER_IRQ_PRIORITY, isr, 0, 0);
lvt_reg.val = x86_read_loapic(LOAPIC_TIMER);
lvt_reg.lvt.mode = TSC_DEADLINE;
lvt_reg.lvt.masked = 0;
x86_write_loapic(LOAPIC_TIMER, lvt_reg.val);
/* Per the SDM, the TSC_DEADLINE MSR is not serializing, so
* this fence is needed to be sure that an upcoming MSR write
* (i.e. a timeout we're about to set) cannot possibly reorder
* around the initialization we just did.
*/
__asm__ volatile("mfence" ::: "memory");
last_announce = rdtsc();
irq_enable(timer_irq());
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
sys_clock_set_timeout(1, false);
}
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);