zephyr/drivers/timer/nrf_rtc_timer.c

276 lines
6.6 KiB
C

/*
* Copyright (c) 2016-2017 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <hal/nrf_rtc.h>
#include <spinlock.h>
#define RTC NRF_RTC1
#define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC)
#define COUNTER_SPAN BIT(24)
#define COUNTER_MAX (COUNTER_SPAN - 1U)
#define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U)
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
static struct k_spinlock lock;
static uint32_t last_count;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(uint32_t cyc)
{
nrf_rtc_cc_set(RTC, 0, cyc & COUNTER_MAX);
}
static uint32_t get_comparator(void)
{
return nrf_rtc_cc_get(RTC, 0);
}
static void event_clear(void)
{
nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_COMPARE_0);
}
static void event_enable(void)
{
nrf_rtc_event_enable(RTC, NRF_RTC_INT_COMPARE0_MASK);
}
static void int_disable(void)
{
nrf_rtc_int_disable(RTC, NRF_RTC_INT_COMPARE0_MASK);
}
static void int_enable(void)
{
nrf_rtc_int_enable(RTC, NRF_RTC_INT_COMPARE0_MASK);
}
static uint32_t counter(void)
{
return nrf_rtc_counter_get(RTC);
}
/* Function ensures that previous CC value will not set event */
static void prevent_false_prev_evt(void)
{
uint32_t now = counter();
uint32_t prev_val;
/* First take care of a risk of an event coming from CC being set to the
* next cycle.
* Reconfigure CC to the future. If CC was set to next cycle we need to
* wait for up to 15 us (half of 32 kHz interval) and clean a potential
* event. After that there is no risk of unwanted event.
*/
prev_val = get_comparator();
event_clear();
set_comparator(now);
event_enable();
if (counter_sub(prev_val, now) == 1) {
k_busy_wait(15);
event_clear();
}
/* Clear interrupt that may have fired as we were setting the
* comparator.
*/
NVIC_ClearPendingIRQ(RTC_IRQn);
}
/* If alarm is next RTC cycle from now, function attempts to adjust. If
* counter progresses during that time it means that 1 cycle elapsed and
* interrupt is set pending.
*/
static void handle_next_cycle_case(uint32_t t)
{
set_comparator(t + 2);
while (t != counter()) {
/* Already expired, time elapsed but event might not be
* generated. Trigger interrupt.
*/
t = counter();
set_comparator(t + 2);
}
}
/* Function safely sets absolute alarm. It assumes that provided value is
* less than MAX_CYCLES from now. It detects late setting and also handles
* +1 cycle case.
*/
static void set_absolute_alarm(uint32_t abs_val)
{
uint32_t diff;
uint32_t t = counter();
diff = counter_sub(abs_val, t);
if (diff == 1) {
handle_next_cycle_case(t);
return;
}
set_comparator(abs_val);
t = counter();
/* A little trick, subtract 2 to force now and now + 1 case fall into
* negative (> MAX_CYCLES). Diff 0 means two cycles from now.
*/
diff = counter_sub(abs_val - 2, t);
if (diff > MAX_CYCLES) {
/* Already expired, set for subsequent cycle. */
/* It is possible that setting CC was interrupted and CC might
* be set to COUNTER+1 value which will not generate an event.
* In that case, special handling is performed (attempt to set
* CC to COUNTER+2).
*/
handle_next_cycle_case(t);
}
}
/* Sets relative alarm from any context. Function is lockless. It only
* blocks RTC interrupt.
*/
static void set_protected_absolute_alarm(uint32_t cycles)
{
int_disable();
prevent_false_prev_evt();
set_absolute_alarm(cycles);
int_enable();
}
/* Note: this function has public linkage, and MUST have this
* particular name. The platform architecture itself doesn't care,
* but there is a test (tests/arch/arm_irq_vector_table) that needs
* to find it to it can set it in a custom vector table. Should
* probably better abstract that at some point (e.g. query and reset
* it by pointer at runtime, maybe?) so we don't have this leaky
* symbol.
*/
void rtc_nrf_isr(void *arg)
{
ARG_UNUSED(arg);
event_clear();
uint32_t t = get_comparator();
uint32_t dticks = counter_sub(t, last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the RTC interrupt
* so it won't get preempted by the interrupt.
*/
set_absolute_alarm(last_count + CYC_PER_TICK);
}
z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : (dticks > 0));
}
int z_clock_driver_init(struct device *device)
{
ARG_UNUSED(device);
/* TODO: replace with counter driver to access RTC */
nrf_rtc_prescaler_set(RTC, 0);
event_clear();
NVIC_ClearPendingIRQ(RTC_IRQn);
int_enable();
IRQ_CONNECT(RTC_IRQn, 1, rtc_nrf_isr, 0, 0);
irq_enable(RTC_IRQn);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR);
nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
set_comparator(counter() + CYC_PER_TICK);
}
z_nrf_clock_control_lf_on(NRF_LFCLK_START_MODE_NOWAIT);
return 0;
}
void z_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = MAX(MIN(ticks - 1, (int32_t)MAX_TICKS), 0);
uint32_t unannounced = counter_sub(counter(), last_count);
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
ticks = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
cyc += (CYC_PER_TICK - 1);
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
cyc += last_count;
set_protected_absolute_alarm(cyc);
}
uint32_t z_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t z_timer_cycle_get_32(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) + last_count;
k_spin_unlock(&lock, key);
return ret;
}