457 lines
12 KiB
C
457 lines
12 KiB
C
/*
|
|
* Copyright (c) 2018 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER
|
|
#include "adc_context.h"
|
|
#include <hal/nrf_saadc.h>
|
|
#include <zephyr/dt-bindings/adc/nrf-adc.h>
|
|
|
|
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
LOG_MODULE_REGISTER(adc_nrfx_saadc);
|
|
|
|
#define DT_DRV_COMPAT nordic_nrf_saadc
|
|
|
|
BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) &&
|
|
(NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) &&
|
|
(NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) &&
|
|
(NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) &&
|
|
(NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) &&
|
|
(NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) &&
|
|
(NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) &&
|
|
(NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) &&
|
|
(NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) &&
|
|
#if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5)
|
|
(NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) &&
|
|
#endif
|
|
(NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD),
|
|
"Definitions from nrf-adc.h do not match those from nrf_saadc.h");
|
|
|
|
struct driver_data {
|
|
struct adc_context ctx;
|
|
|
|
uint8_t positive_inputs[SAADC_CH_NUM];
|
|
};
|
|
|
|
static struct driver_data m_data = {
|
|
ADC_CONTEXT_INIT_TIMER(m_data, ctx),
|
|
ADC_CONTEXT_INIT_LOCK(m_data, ctx),
|
|
ADC_CONTEXT_INIT_SYNC(m_data, ctx),
|
|
};
|
|
|
|
|
|
/* Implementation of the ADC driver API function: adc_channel_setup. */
|
|
static int adc_nrfx_channel_setup(const struct device *dev,
|
|
const struct adc_channel_cfg *channel_cfg)
|
|
{
|
|
nrf_saadc_channel_config_t config = {
|
|
.resistor_p = NRF_SAADC_RESISTOR_DISABLED,
|
|
.resistor_n = NRF_SAADC_RESISTOR_DISABLED,
|
|
.burst = NRF_SAADC_BURST_DISABLED,
|
|
};
|
|
uint8_t channel_id = channel_cfg->channel_id;
|
|
|
|
if (channel_id >= SAADC_CH_NUM) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (channel_cfg->gain) {
|
|
case ADC_GAIN_1_6:
|
|
config.gain = NRF_SAADC_GAIN1_6;
|
|
break;
|
|
case ADC_GAIN_1_5:
|
|
config.gain = NRF_SAADC_GAIN1_5;
|
|
break;
|
|
case ADC_GAIN_1_4:
|
|
config.gain = NRF_SAADC_GAIN1_4;
|
|
break;
|
|
case ADC_GAIN_1_3:
|
|
config.gain = NRF_SAADC_GAIN1_3;
|
|
break;
|
|
case ADC_GAIN_1_2:
|
|
config.gain = NRF_SAADC_GAIN1_2;
|
|
break;
|
|
case ADC_GAIN_1:
|
|
config.gain = NRF_SAADC_GAIN1;
|
|
break;
|
|
case ADC_GAIN_2:
|
|
config.gain = NRF_SAADC_GAIN2;
|
|
break;
|
|
case ADC_GAIN_4:
|
|
config.gain = NRF_SAADC_GAIN4;
|
|
break;
|
|
default:
|
|
LOG_ERR("Selected ADC gain is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (channel_cfg->reference) {
|
|
case ADC_REF_INTERNAL:
|
|
config.reference = NRF_SAADC_REFERENCE_INTERNAL;
|
|
break;
|
|
case ADC_REF_VDD_1_4:
|
|
config.reference = NRF_SAADC_REFERENCE_VDD4;
|
|
break;
|
|
default:
|
|
LOG_ERR("Selected ADC reference is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (channel_cfg->acquisition_time) {
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3):
|
|
config.acq_time = NRF_SAADC_ACQTIME_3US;
|
|
break;
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5):
|
|
config.acq_time = NRF_SAADC_ACQTIME_5US;
|
|
break;
|
|
case ADC_ACQ_TIME_DEFAULT:
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10):
|
|
config.acq_time = NRF_SAADC_ACQTIME_10US;
|
|
break;
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15):
|
|
config.acq_time = NRF_SAADC_ACQTIME_15US;
|
|
break;
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20):
|
|
config.acq_time = NRF_SAADC_ACQTIME_20US;
|
|
break;
|
|
case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40):
|
|
config.acq_time = NRF_SAADC_ACQTIME_40US;
|
|
break;
|
|
default:
|
|
LOG_ERR("Selected ADC acquisition time is not valid");
|
|
return -EINVAL;
|
|
}
|
|
|
|
config.mode = (channel_cfg->differential ?
|
|
NRF_SAADC_MODE_DIFFERENTIAL : NRF_SAADC_MODE_SINGLE_ENDED);
|
|
|
|
/* Keep the channel disabled in hardware (set positive input to
|
|
* NRF_SAADC_INPUT_DISABLED) until it is selected to be included
|
|
* in a sampling sequence.
|
|
*/
|
|
|
|
nrf_saadc_channel_init(NRF_SAADC, channel_id, &config);
|
|
nrf_saadc_channel_input_set(NRF_SAADC,
|
|
channel_id,
|
|
NRF_SAADC_INPUT_DISABLED,
|
|
channel_cfg->input_negative);
|
|
|
|
/* Store the positive input selection in a dedicated array,
|
|
* to get it later when the channel is selected for a sampling
|
|
* and to mark the channel as configured (ready to be selected).
|
|
*/
|
|
m_data.positive_inputs[channel_id] = channel_cfg->input_positive;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void adc_context_start_sampling(struct adc_context *ctx)
|
|
{
|
|
nrf_saadc_enable(NRF_SAADC);
|
|
|
|
if (ctx->sequence.calibrate) {
|
|
nrf_saadc_task_trigger(NRF_SAADC,
|
|
NRF_SAADC_TASK_CALIBRATEOFFSET);
|
|
} else {
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
|
|
}
|
|
}
|
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
|
|
bool repeat)
|
|
{
|
|
ARG_UNUSED(ctx);
|
|
|
|
if (!repeat) {
|
|
nrf_saadc_buffer_pointer_set(
|
|
NRF_SAADC,
|
|
nrf_saadc_buffer_pointer_get(NRF_SAADC) +
|
|
nrf_saadc_amount_get(NRF_SAADC));
|
|
}
|
|
}
|
|
|
|
static int set_resolution(const struct adc_sequence *sequence)
|
|
{
|
|
nrf_saadc_resolution_t nrf_resolution;
|
|
|
|
switch (sequence->resolution) {
|
|
case 8:
|
|
nrf_resolution = NRF_SAADC_RESOLUTION_8BIT;
|
|
break;
|
|
case 10:
|
|
nrf_resolution = NRF_SAADC_RESOLUTION_10BIT;
|
|
break;
|
|
case 12:
|
|
nrf_resolution = NRF_SAADC_RESOLUTION_12BIT;
|
|
break;
|
|
case 14:
|
|
nrf_resolution = NRF_SAADC_RESOLUTION_14BIT;
|
|
break;
|
|
default:
|
|
LOG_ERR("ADC resolution value %d is not valid",
|
|
sequence->resolution);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution);
|
|
return 0;
|
|
}
|
|
|
|
static int set_oversampling(const struct adc_sequence *sequence,
|
|
uint8_t active_channels)
|
|
{
|
|
nrf_saadc_oversample_t nrf_oversampling;
|
|
|
|
if ((active_channels > 1) && (sequence->oversampling > 0)) {
|
|
LOG_ERR(
|
|
"Oversampling is supported for single channel only");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (sequence->oversampling) {
|
|
case 0:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED;
|
|
break;
|
|
case 1:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X;
|
|
break;
|
|
case 2:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X;
|
|
break;
|
|
case 3:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X;
|
|
break;
|
|
case 4:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X;
|
|
break;
|
|
case 5:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X;
|
|
break;
|
|
case 6:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X;
|
|
break;
|
|
case 7:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X;
|
|
break;
|
|
case 8:
|
|
nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X;
|
|
break;
|
|
default:
|
|
LOG_ERR("Oversampling value %d is not valid",
|
|
sequence->oversampling);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling);
|
|
return 0;
|
|
}
|
|
|
|
static int check_buffer_size(const struct adc_sequence *sequence,
|
|
uint8_t active_channels)
|
|
{
|
|
size_t needed_buffer_size;
|
|
|
|
needed_buffer_size = active_channels * sizeof(nrf_saadc_value_t);
|
|
if (sequence->options) {
|
|
needed_buffer_size *= (1 + sequence->options->extra_samplings);
|
|
}
|
|
|
|
if (sequence->buffer_size < needed_buffer_size) {
|
|
LOG_ERR("Provided buffer is too small (%u/%u)",
|
|
sequence->buffer_size, needed_buffer_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int start_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
int error;
|
|
uint32_t selected_channels = sequence->channels;
|
|
uint8_t active_channels;
|
|
uint8_t channel_id;
|
|
|
|
/* Signal an error if channel selection is invalid (no channels or
|
|
* a non-existing one is selected).
|
|
*/
|
|
if (!selected_channels ||
|
|
(selected_channels & ~BIT_MASK(SAADC_CH_NUM))) {
|
|
LOG_ERR("Invalid selection of channels");
|
|
return -EINVAL;
|
|
}
|
|
|
|
active_channels = 0U;
|
|
|
|
/* Enable only the channels selected for the pointed sequence.
|
|
* Disable all the rest.
|
|
*/
|
|
channel_id = 0U;
|
|
do {
|
|
if (selected_channels & BIT(channel_id)) {
|
|
/* Signal an error if a selected channel has not been
|
|
* configured yet.
|
|
*/
|
|
if (m_data.positive_inputs[channel_id] == 0U) {
|
|
LOG_ERR("Channel %u not configured",
|
|
channel_id);
|
|
return -EINVAL;
|
|
}
|
|
/* When oversampling is used, the burst mode needs to
|
|
* be activated. Unfortunately, this mode cannot be
|
|
* activated permanently in the channel setup, because
|
|
* then the multiple channel sampling fails (the END
|
|
* event is not generated) after switching to a single
|
|
* channel sampling and back. Thus, when oversampling
|
|
* is not used (hence, the multiple channel sampling is
|
|
* possible), the burst mode have to be deactivated.
|
|
*/
|
|
nrf_saadc_burst_set(NRF_SAADC, channel_id,
|
|
(sequence->oversampling != 0U ?
|
|
NRF_SAADC_BURST_ENABLED :
|
|
NRF_SAADC_BURST_DISABLED));
|
|
nrf_saadc_channel_pos_input_set(
|
|
NRF_SAADC,
|
|
channel_id,
|
|
m_data.positive_inputs[channel_id]);
|
|
++active_channels;
|
|
} else {
|
|
nrf_saadc_channel_pos_input_set(
|
|
NRF_SAADC,
|
|
channel_id,
|
|
NRF_SAADC_INPUT_DISABLED);
|
|
}
|
|
} while (++channel_id < SAADC_CH_NUM);
|
|
|
|
error = set_resolution(sequence);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
error = set_oversampling(sequence, active_channels);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
error = check_buffer_size(sequence, active_channels);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
nrf_saadc_buffer_init(NRF_SAADC,
|
|
(nrf_saadc_value_t *)sequence->buffer,
|
|
active_channels);
|
|
|
|
adc_context_start_read(&m_data.ctx, sequence);
|
|
|
|
error = adc_context_wait_for_completion(&m_data.ctx);
|
|
return error;
|
|
}
|
|
|
|
/* Implementation of the ADC driver API function: adc_read. */
|
|
static int adc_nrfx_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
int error;
|
|
|
|
adc_context_lock(&m_data.ctx, false, NULL);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&m_data.ctx, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
/* Implementation of the ADC driver API function: adc_read_async. */
|
|
static int adc_nrfx_read_async(const struct device *dev,
|
|
const struct adc_sequence *sequence,
|
|
struct k_poll_signal *async)
|
|
{
|
|
int error;
|
|
|
|
adc_context_lock(&m_data.ctx, true, async);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&m_data.ctx, error);
|
|
|
|
return error;
|
|
}
|
|
#endif /* CONFIG_ADC_ASYNC */
|
|
|
|
static void saadc_irq_handler(const struct device *dev)
|
|
{
|
|
if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) {
|
|
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
|
|
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
|
|
nrf_saadc_disable(NRF_SAADC);
|
|
|
|
adc_context_on_sampling_done(&m_data.ctx, dev);
|
|
} else if (nrf_saadc_event_check(NRF_SAADC,
|
|
NRF_SAADC_EVENT_CALIBRATEDONE)) {
|
|
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
|
|
|
|
/*
|
|
* The workaround for Nordic nRF52832 anomalies 86 and
|
|
* 178 is an explicit STOP after CALIBRATEOFFSET
|
|
* before issuing START.
|
|
*/
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP);
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START);
|
|
nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE);
|
|
}
|
|
}
|
|
|
|
static int init_saadc(const struct device *dev)
|
|
{
|
|
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END);
|
|
nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE);
|
|
nrf_saadc_int_enable(NRF_SAADC,
|
|
NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
|
|
NRFX_IRQ_ENABLE(DT_INST_IRQN(0));
|
|
|
|
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
|
|
saadc_irq_handler, DEVICE_DT_INST_GET(0), 0);
|
|
|
|
adc_context_unlock_unconditionally(&m_data.ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct adc_driver_api adc_nrfx_driver_api = {
|
|
.channel_setup = adc_nrfx_channel_setup,
|
|
.read = adc_nrfx_read,
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
.read_async = adc_nrfx_read_async,
|
|
#endif
|
|
.ref_internal = 600,
|
|
};
|
|
|
|
/*
|
|
* There is only one instance on supported SoCs, so inst is guaranteed
|
|
* to be 0 if any instance is okay. (We use adc_0 above, so the driver
|
|
* is relying on the numeric instance value in a way that happens to
|
|
* be safe.)
|
|
*
|
|
* Just in case that assumption becomes invalid in the future, we use
|
|
* a BUILD_ASSERT().
|
|
*/
|
|
#define SAADC_INIT(inst) \
|
|
BUILD_ASSERT((inst) == 0, \
|
|
"multiple instances not supported"); \
|
|
DEVICE_DT_INST_DEFINE(0, \
|
|
init_saadc, \
|
|
NULL, \
|
|
NULL, \
|
|
NULL, \
|
|
POST_KERNEL, \
|
|
CONFIG_ADC_INIT_PRIORITY, \
|
|
&adc_nrfx_driver_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(SAADC_INIT)
|