zephyr/drivers/spi/spi_max32.c

806 lines
23 KiB
C

/*
* Copyright (c) 2024 Analog Devices, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT adi_max32_spi
#include <string.h>
#include <errno.h>
#if CONFIG_SPI_MAX32_DMA
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/clock_control/adi_max32_clock_control.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <wrap_max32_spi.h>
LOG_MODULE_REGISTER(spi_max32, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#ifdef CONFIG_SPI_MAX32_DMA
struct max32_spi_dma_config {
const struct device *dev;
const uint32_t channel;
const uint32_t slot;
};
#endif /* CONFIG_SPI_MAX32_DMA */
struct max32_spi_config {
mxc_spi_regs_t *regs;
const struct pinctrl_dev_config *pctrl;
const struct device *clock;
struct max32_perclk perclk;
#ifdef CONFIG_SPI_MAX32_INTERRUPT
void (*irq_config_func)(const struct device *dev);
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
#ifdef CONFIG_SPI_MAX32_DMA
struct max32_spi_dma_config tx_dma;
struct max32_spi_dma_config rx_dma;
#endif /* CONFIG_SPI_MAX32_DMA */
};
/* Device run time data */
struct max32_spi_data {
struct spi_context ctx;
const struct device *dev;
mxc_spi_req_t req;
uint8_t dummy[2];
#ifdef CONFIG_SPI_MAX32_DMA
volatile uint8_t dma_stat;
#endif /* CONFIG_SPI_MAX32_DMA */
#ifdef CONFIG_SPI_ASYNC
struct k_work async_work;
#endif /* CONFIG_SPI_ASYNC */
};
#ifdef CONFIG_SPI_MAX32_DMA
#define SPI_MAX32_DMA_ERROR_FLAG 0x01U
#define SPI_MAX32_DMA_RX_DONE_FLAG 0x02U
#define SPI_MAX32_DMA_TX_DONE_FLAG 0x04U
#define SPI_MAX32_DMA_DONE_FLAG (SPI_MAX32_DMA_RX_DONE_FLAG | SPI_MAX32_DMA_TX_DONE_FLAG)
#endif /* CONFIG_SPI_MAX32_DMA */
#ifdef CONFIG_SPI_MAX32_INTERRUPT
static void spi_max32_callback(mxc_spi_req_t *req, int error);
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
static int spi_configure(const struct device *dev, const struct spi_config *config)
{
int ret = 0;
const struct max32_spi_config *cfg = dev->config;
mxc_spi_regs_t *regs = cfg->regs;
struct max32_spi_data *data = dev->data;
if (spi_context_configured(&data->ctx, config)) {
return 0;
}
if (SPI_OP_MODE_GET(config->operation) & SPI_OP_MODE_SLAVE) {
return -ENOTSUP;
}
int master_mode = 1;
int quad_mode = 0;
int num_slaves = 1;
int ss_polarity = (config->operation & SPI_CS_ACTIVE_HIGH) ? 1 : 0;
unsigned int spi_speed = (unsigned int)config->frequency;
ret = Wrap_MXC_SPI_Init(regs, master_mode, quad_mode, num_slaves, ss_polarity, spi_speed);
if (ret) {
return ret;
}
int cpol = (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) ? 1 : 0;
int cpha = (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) ? 1 : 0;
if (cpol && cpha) {
ret = MXC_SPI_SetMode(regs, SPI_MODE_3);
} else if (cpha) {
ret = MXC_SPI_SetMode(regs, SPI_MODE_2);
} else if (cpol) {
ret = MXC_SPI_SetMode(regs, SPI_MODE_1);
} else {
ret = MXC_SPI_SetMode(regs, SPI_MODE_0);
}
if (ret) {
return ret;
}
ret = MXC_SPI_SetDataSize(regs, SPI_WORD_SIZE_GET(config->operation));
if (ret) {
return ret;
}
#if defined(CONFIG_SPI_EXTENDED_MODES)
switch (config->operation & SPI_LINES_MASK) {
case SPI_LINES_QUAD:
ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_QUAD);
break;
case SPI_LINES_DUAL:
ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_DUAL);
break;
case SPI_LINES_OCTAL:
ret = -ENOTSUP;
break;
case SPI_LINES_SINGLE:
default:
ret = MXC_SPI_SetWidth(regs, SPI_WIDTH_STANDARD);
break;
}
if (ret) {
return ret;
}
#endif
data->ctx.config = config;
return ret;
}
static inline int spi_max32_get_dfs_shift(const struct spi_context *ctx)
{
if (SPI_WORD_SIZE_GET(ctx->config->operation) < 9) {
return 0;
}
return 1;
}
static void spi_max32_setup(mxc_spi_regs_t *spi, mxc_spi_req_t *req)
{
req->rxCnt = 0;
req->txCnt = 0;
if (spi->ctrl0 & ADI_MAX32_SPI_CTRL_MASTER_MODE) {
MXC_SPI_SetSlave(spi, req->ssIdx);
}
if (req->rxData && req->rxLen) {
MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_RX_NUM_CHAR,
req->rxLen << MXC_F_SPI_CTRL1_RX_NUM_CHAR_POS);
spi->dma |= MXC_F_SPI_DMA_RX_FIFO_EN;
} else {
spi->ctrl1 &= ~MXC_F_SPI_CTRL1_RX_NUM_CHAR;
spi->dma &= ~MXC_F_SPI_DMA_RX_FIFO_EN;
}
if (req->txLen) {
MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_TX_NUM_CHAR,
req->txLen << MXC_F_SPI_CTRL1_TX_NUM_CHAR_POS);
spi->dma |= MXC_F_SPI_DMA_TX_FIFO_EN;
} else {
spi->ctrl1 &= ~MXC_F_SPI_CTRL1_TX_NUM_CHAR;
spi->dma &= ~MXC_F_SPI_DMA_TX_FIFO_EN;
}
spi->dma |= (ADI_MAX32_SPI_DMA_TX_FIFO_CLEAR | ADI_MAX32_SPI_DMA_RX_FIFO_CLEAR);
spi->ctrl0 |= MXC_F_SPI_CTRL0_EN;
MXC_SPI_ClearFlags(spi);
}
#ifndef CONFIG_SPI_MAX32_INTERRUPT
static int spi_max32_transceive_sync(mxc_spi_regs_t *spi, struct max32_spi_data *data,
uint8_t dfs_shift)
{
int ret = 0;
mxc_spi_req_t *req = &data->req;
uint32_t remain, flags, tx_len, rx_len;
MXC_SPI_ClearTXFIFO(spi);
MXC_SPI_ClearRXFIFO(spi);
tx_len = req->txLen << dfs_shift;
rx_len = req->rxLen << dfs_shift;
do {
remain = tx_len - req->txCnt;
if (remain > 0) {
if (!data->req.txData) {
req->txCnt += MXC_SPI_WriteTXFIFO(spi, data->dummy,
MIN(remain, sizeof(data->dummy)));
} else {
req->txCnt +=
MXC_SPI_WriteTXFIFO(spi, &req->txData[req->txCnt], remain);
}
if (!(spi->ctrl0 & MXC_F_SPI_CTRL0_START)) {
spi->ctrl0 |= MXC_F_SPI_CTRL0_START;
}
}
if (req->rxCnt < rx_len) {
req->rxCnt += MXC_SPI_ReadRXFIFO(spi, &req->rxData[req->rxCnt],
rx_len - req->rxCnt);
}
} while ((req->txCnt < tx_len) || (req->rxCnt < rx_len));
do {
flags = MXC_SPI_GetFlags(spi);
} while (!(flags & ADI_MAX32_SPI_INT_FL_MST_DONE));
MXC_SPI_ClearFlags(spi);
return ret;
}
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
static int spi_max32_transceive(const struct device *dev)
{
int ret = 0;
const struct max32_spi_config *cfg = dev->config;
struct max32_spi_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
uint32_t len;
uint8_t dfs_shift;
MXC_SPI_ClearTXFIFO(cfg->regs);
dfs_shift = spi_max32_get_dfs_shift(ctx);
len = spi_context_max_continuous_chunk(ctx);
data->req.txLen = len >> dfs_shift;
data->req.txData = (uint8_t *)ctx->tx_buf;
data->req.rxLen = len >> dfs_shift;
data->req.rxData = ctx->rx_buf;
data->req.rxData = ctx->rx_buf;
data->req.rxLen = len >> dfs_shift;
if (!data->req.rxData) {
/* Pass a dummy buffer to HAL if receive buffer is NULL, otherwise
* corrupt data is read during subsequent transactions.
*/
data->req.rxData = data->dummy;
data->req.rxLen = 0;
}
data->req.spi = cfg->regs;
data->req.ssIdx = ctx->config->slave;
data->req.ssDeassert = 0;
data->req.txCnt = 0;
data->req.rxCnt = 0;
spi_max32_setup(cfg->regs, &data->req);
#ifdef CONFIG_SPI_MAX32_INTERRUPT
MXC_SPI_SetTXThreshold(cfg->regs, 1);
if (data->req.rxLen) {
MXC_SPI_SetRXThreshold(cfg->regs, 2);
MXC_SPI_EnableInt(cfg->regs, ADI_MAX32_SPI_INT_EN_RX_THD);
}
MXC_SPI_EnableInt(cfg->regs, ADI_MAX32_SPI_INT_EN_TX_THD | ADI_MAX32_SPI_INT_EN_MST_DONE);
if (!data->req.txData) {
data->req.txCnt =
MXC_SPI_WriteTXFIFO(cfg->regs, data->dummy, MIN(len, sizeof(data->dummy)));
} else {
data->req.txCnt = MXC_SPI_WriteTXFIFO(cfg->regs, data->req.txData, len);
}
MXC_SPI_StartTransmission(cfg->regs);
#else
ret = spi_max32_transceive_sync(cfg->regs, data, dfs_shift);
if (ret) {
ret = -EIO;
} else {
spi_context_update_tx(ctx, 1, len);
spi_context_update_rx(ctx, 1, len);
}
#endif
return ret;
}
static int transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
bool async, spi_callback_t cb, void *userdata)
{
int ret = 0;
const struct max32_spi_config *cfg = dev->config;
struct max32_spi_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
bool hw_cs_ctrl = true;
#ifndef CONFIG_SPI_MAX32_INTERRUPT
if (async) {
return -ENOTSUP;
}
#endif
spi_context_lock(ctx, async, cb, userdata, config);
ret = spi_configure(dev, config);
if (ret != 0) {
spi_context_release(ctx, ret);
return -EIO;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
/* Check if CS GPIO exists */
if (spi_cs_is_gpio(config)) {
hw_cs_ctrl = false;
}
MXC_SPI_HWSSControl(cfg->regs, hw_cs_ctrl);
/* Assert the CS line if HW control disabled */
if (!hw_cs_ctrl) {
spi_context_cs_control(ctx, true);
} else {
cfg->regs->ctrl0 =
(cfg->regs->ctrl0 & ~MXC_F_SPI_CTRL0_START) | MXC_F_SPI_CTRL0_SS_CTRL;
}
#ifdef CONFIG_SPI_MAX32_INTERRUPT
do {
ret = spi_max32_transceive(dev);
if (!ret) {
ret = spi_context_wait_for_completion(ctx);
if (ret || async) {
break;
}
} else {
break;
}
} while ((spi_context_tx_on(ctx) || spi_context_rx_on(ctx)));
#else
do {
ret = spi_max32_transceive(dev);
if (ret) {
break;
}
} while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx));
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
/* Deassert the CS line if hw control disabled */
if (!async) {
if (!hw_cs_ctrl) {
spi_context_cs_control(ctx, false);
} else {
cfg->regs->ctrl0 &= ~(MXC_F_SPI_CTRL0_START | MXC_F_SPI_CTRL0_SS_CTRL |
MXC_F_SPI_CTRL0_EN);
cfg->regs->ctrl0 |= MXC_F_SPI_CTRL0_EN;
}
}
spi_context_release(ctx, ret);
return ret;
}
#ifdef CONFIG_SPI_MAX32_DMA
static void spi_max32_dma_callback(const struct device *dev, void *arg, uint32_t channel,
int status)
{
struct max32_spi_data *data = arg;
const struct device *spi_dev = data->dev;
const struct max32_spi_config *config = spi_dev->config;
uint32_t len;
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
} else {
/* identify the origin of this callback */
if (channel == config->tx_dma.channel) {
data->dma_stat |= SPI_MAX32_DMA_TX_DONE_FLAG;
} else if (channel == config->rx_dma.channel) {
data->dma_stat |= SPI_MAX32_DMA_RX_DONE_FLAG;
}
}
if ((data->dma_stat & SPI_MAX32_DMA_DONE_FLAG) == SPI_MAX32_DMA_DONE_FLAG) {
len = spi_context_max_continuous_chunk(&data->ctx);
spi_context_update_tx(&data->ctx, 1, len);
spi_context_update_rx(&data->ctx, 1, len);
spi_context_complete(&data->ctx, spi_dev, status == 0 ? 0 : -EIO);
}
}
static int spi_max32_tx_dma_load(const struct device *dev, const uint8_t *buf, uint32_t len,
uint8_t word_shift)
{
int ret;
const struct max32_spi_config *config = dev->config;
struct max32_spi_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL;
dma_cfg.dma_callback = spi_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->tx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U << word_shift;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U << word_shift;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = len;
if (buf) {
dma_blk.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.source_address = (uint32_t)buf;
} else {
dma_blk.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
dma_blk.source_address = (uint32_t)data->dummy;
}
ret = dma_config(config->tx_dma.dev, config->tx_dma.channel, &dma_cfg);
if (ret < 0) {
LOG_ERR("Error configuring Tx DMA (%d)", ret);
}
return dma_start(config->tx_dma.dev, config->tx_dma.channel);
}
static int spi_max32_rx_dma_load(const struct device *dev, const uint8_t *buf, uint32_t len,
uint8_t word_shift)
{
int ret;
const struct max32_spi_config *config = dev->config;
struct max32_spi_data *data = dev->data;
struct dma_config dma_cfg = {0};
struct dma_block_config dma_blk = {0};
dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY;
dma_cfg.dma_callback = spi_max32_dma_callback;
dma_cfg.user_data = (void *)data;
dma_cfg.dma_slot = config->rx_dma.slot;
dma_cfg.block_count = 1;
dma_cfg.source_data_size = 1U << word_shift;
dma_cfg.source_burst_length = 1U;
dma_cfg.dest_data_size = 1U << word_shift;
dma_cfg.head_block = &dma_blk;
dma_blk.block_size = len;
if (buf) {
dma_blk.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
dma_blk.dest_address = (uint32_t)buf;
} else {
dma_blk.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
dma_blk.dest_address = (uint32_t)data->dummy;
}
ret = dma_config(config->rx_dma.dev, config->rx_dma.channel, &dma_cfg);
if (ret < 0) {
LOG_ERR("Error configuring Rx DMA (%d)", ret);
}
return dma_start(config->rx_dma.dev, config->rx_dma.channel);
}
static int transceive_dma(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
bool async, spi_callback_t cb, void *userdata)
{
int ret = 0;
const struct max32_spi_config *cfg = dev->config;
struct max32_spi_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
mxc_spi_regs_t *spi = cfg->regs;
struct dma_status status;
uint32_t len, word_count;
uint8_t dfs_shift;
bool hw_cs_ctrl = true;
spi_context_lock(ctx, async, cb, userdata, config);
ret = dma_get_status(cfg->tx_dma.dev, cfg->tx_dma.channel, &status);
if (ret < 0 || status.busy) {
ret = ret < 0 ? ret : -EBUSY;
goto unlock;
}
ret = dma_get_status(cfg->rx_dma.dev, cfg->rx_dma.channel, &status);
if (ret < 0 || status.busy) {
ret = ret < 0 ? ret : -EBUSY;
goto unlock;
}
ret = spi_configure(dev, config);
if (ret != 0) {
ret = -EIO;
goto unlock;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1);
/* Check if CS GPIO exists */
if (spi_cs_is_gpio(config)) {
hw_cs_ctrl = false;
}
MXC_SPI_HWSSControl(cfg->regs, hw_cs_ctrl);
/* Assert the CS line if HW control disabled */
if (!hw_cs_ctrl) {
spi_context_cs_control(ctx, true);
}
MXC_SPI_SetSlave(cfg->regs, ctx->config->slave);
do {
spi->ctrl0 &= ~(MXC_F_SPI_CTRL0_EN);
len = spi_context_max_continuous_chunk(ctx);
dfs_shift = spi_max32_get_dfs_shift(ctx);
word_count = len >> dfs_shift;
MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_RX_NUM_CHAR,
word_count << MXC_F_SPI_CTRL1_RX_NUM_CHAR_POS);
spi->dma |= ADI_MAX32_SPI_DMA_RX_FIFO_CLEAR;
spi->dma |= MXC_F_SPI_DMA_RX_FIFO_EN;
spi->dma |= ADI_MAX32_SPI_DMA_RX_DMA_EN;
MXC_SPI_SetRXThreshold(spi, 0);
ret = spi_max32_rx_dma_load(dev, ctx->rx_buf, len, dfs_shift);
if (ret < 0) {
goto unlock;
}
MXC_SETFIELD(spi->ctrl1, MXC_F_SPI_CTRL1_TX_NUM_CHAR,
word_count << MXC_F_SPI_CTRL1_TX_NUM_CHAR_POS);
spi->dma |= ADI_MAX32_SPI_DMA_TX_FIFO_CLEAR;
spi->dma |= MXC_F_SPI_DMA_TX_FIFO_EN;
spi->dma |= ADI_MAX32_SPI_DMA_TX_DMA_EN;
MXC_SPI_SetTXThreshold(spi, 1);
ret = spi_max32_tx_dma_load(dev, ctx->tx_buf, len, dfs_shift);
if (ret < 0) {
goto unlock;
}
spi->ctrl0 |= MXC_F_SPI_CTRL0_EN;
data->dma_stat = 0;
MXC_SPI_StartTransmission(spi);
ret = spi_context_wait_for_completion(ctx);
} while (!ret && (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)));
unlock:
/* Deassert the CS line if hw control disabled */
if (!hw_cs_ctrl) {
spi_context_cs_control(ctx, false);
}
spi_context_release(ctx, ret);
return ret;
}
#endif /* CONFIG_SPI_MAX32_DMA */
static int api_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_MAX32_DMA
const struct max32_spi_config *cfg = dev->config;
if (cfg->tx_dma.channel != 0xFF && cfg->rx_dma.channel != 0xFF) {
return transceive_dma(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#endif /* CONFIG_SPI_MAX32_DMA */
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int api_transceive_async(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs, spi_callback_t cb,
void *userdata)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
#ifdef CONFIG_SPI_MAX32_INTERRUPT
static void spi_max32_callback(mxc_spi_req_t *req, int error)
{
struct max32_spi_data *data = CONTAINER_OF(req, struct max32_spi_data, req);
struct spi_context *ctx = &data->ctx;
const struct device *dev = data->dev;
uint32_t len;
len = spi_context_max_continuous_chunk(ctx);
spi_context_update_tx(ctx, 1, len);
spi_context_update_rx(ctx, 1, len);
#ifdef CONFIG_SPI_ASYNC
if (ctx->asynchronous && ((spi_context_tx_on(ctx) || spi_context_rx_on(ctx)))) {
k_work_submit(&data->async_work);
} else {
if (spi_cs_is_gpio(ctx->config)) {
spi_context_cs_control(ctx, false);
} else {
req->spi->ctrl0 &= ~(MXC_F_SPI_CTRL0_START | MXC_F_SPI_CTRL0_SS_CTRL |
MXC_F_SPI_CTRL0_EN);
req->spi->ctrl0 |= MXC_F_SPI_CTRL0_EN;
}
spi_context_complete(ctx, dev, error == E_NO_ERROR ? 0 : -EIO);
}
#else
spi_context_complete(ctx, dev, error == E_NO_ERROR ? 0 : -EIO);
#endif
}
#ifdef CONFIG_SPI_ASYNC
void spi_max32_async_work_handler(struct k_work *work)
{
struct max32_spi_data *data = CONTAINER_OF(work, struct max32_spi_data, async_work);
const struct device *dev = data->dev;
int ret;
ret = spi_max32_transceive(dev);
if (ret) {
spi_context_complete(&data->ctx, dev, -EIO);
}
}
#endif /* CONFIG_SPI_ASYNC */
static void spi_max32_isr(const struct device *dev)
{
const struct max32_spi_config *cfg = dev->config;
struct max32_spi_data *data = dev->data;
mxc_spi_req_t *req = &data->req;
mxc_spi_regs_t *spi = cfg->regs;
uint32_t flags, remain;
uint8_t dfs_shift = spi_max32_get_dfs_shift(&data->ctx);
flags = MXC_SPI_GetFlags(spi);
MXC_SPI_ClearFlags(spi);
remain = (req->txLen << dfs_shift) - req->txCnt;
if (flags & ADI_MAX32_SPI_INT_FL_TX_THD) {
if (remain) {
if (!data->req.txData) {
req->txCnt += MXC_SPI_WriteTXFIFO(cfg->regs, data->dummy,
MIN(remain, sizeof(data->dummy)));
} else {
req->txCnt +=
MXC_SPI_WriteTXFIFO(spi, &req->txData[req->txCnt], remain);
}
} else {
MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_TX_THD);
}
}
remain = (req->rxLen << dfs_shift) - req->rxCnt;
if (remain) {
req->rxCnt += MXC_SPI_ReadRXFIFO(spi, &req->rxData[req->rxCnt], remain);
remain = (req->rxLen << dfs_shift) - req->rxCnt;
if (remain >= MXC_SPI_FIFO_DEPTH) {
MXC_SPI_SetRXThreshold(spi, 2);
} else {
MXC_SPI_SetRXThreshold(spi, remain);
}
} else {
MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_RX_THD);
}
if ((req->txLen == req->txCnt) && (req->rxLen == req->rxCnt)) {
MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_TX_THD | ADI_MAX32_SPI_INT_EN_RX_THD);
if (flags & ADI_MAX32_SPI_INT_FL_MST_DONE) {
MXC_SPI_DisableInt(spi, ADI_MAX32_SPI_INT_EN_MST_DONE);
spi_max32_callback(req, 0);
}
}
}
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
static int api_release(const struct device *dev, const struct spi_config *config)
{
struct max32_spi_data *data = dev->data;
if (!spi_context_configured(&data->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_max32_init(const struct device *dev)
{
int ret = 0;
const struct max32_spi_config *const cfg = dev->config;
mxc_spi_regs_t *regs = cfg->regs;
struct max32_spi_data *data = dev->data;
if (!device_is_ready(cfg->clock)) {
return -ENODEV;
}
MXC_SPI_Shutdown(regs);
ret = clock_control_on(cfg->clock, (clock_control_subsys_t)&cfg->perclk);
if (ret) {
return ret;
}
ret = pinctrl_apply_state(cfg->pctrl, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
data->dev = dev;
#ifdef CONFIG_SPI_MAX32_INTERRUPT
cfg->irq_config_func(dev);
#ifdef CONFIG_SPI_ASYNC
k_work_init(&data->async_work, spi_max32_async_work_handler);
#endif
#endif
spi_context_unlock_unconditionally(&data->ctx);
return ret;
}
/* SPI driver APIs structure */
static const struct spi_driver_api spi_max32_api = {
.transceive = api_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = api_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = api_release,
};
/* SPI driver registration */
#ifdef CONFIG_SPI_MAX32_INTERRUPT
#define SPI_MAX32_CONFIG_IRQ_FUNC(n) .irq_config_func = spi_max32_irq_config_func_##n,
#define SPI_MAX32_IRQ_CONFIG_FUNC(n) \
static void spi_max32_irq_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_max32_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#else
#define SPI_MAX32_CONFIG_IRQ_FUNC(n)
#define SPI_MAX32_IRQ_CONFIG_FUNC(n)
#endif /* CONFIG_SPI_MAX32_INTERRUPT */
#if CONFIG_SPI_MAX32_DMA
#define MAX32_DT_INST_DMA_CTLR(n, name) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), \
(DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, name))), (NULL))
#define MAX32_DT_INST_DMA_CELL(n, name, cell) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(n, dmas), (DT_INST_DMAS_CELL_BY_NAME(n, name, cell)), \
(0xff))
#define MAX32_SPI_DMA_INIT(n) \
.tx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, tx), \
.tx_dma.channel = MAX32_DT_INST_DMA_CELL(n, tx, channel), \
.tx_dma.slot = MAX32_DT_INST_DMA_CELL(n, tx, slot), \
.rx_dma.dev = MAX32_DT_INST_DMA_CTLR(n, rx), \
.rx_dma.channel = MAX32_DT_INST_DMA_CELL(n, rx, channel), \
.rx_dma.slot = MAX32_DT_INST_DMA_CELL(n, rx, slot),
#else
#define MAX32_SPI_DMA_INIT(n)
#endif
#define DEFINE_SPI_MAX32(_num) \
PINCTRL_DT_INST_DEFINE(_num); \
SPI_MAX32_IRQ_CONFIG_FUNC(_num) \
static const struct max32_spi_config max32_spi_config_##_num = { \
.regs = (mxc_spi_regs_t *)DT_INST_REG_ADDR(_num), \
.pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \
.clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \
.perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \
.perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \
MAX32_SPI_DMA_INIT(_num) SPI_MAX32_CONFIG_IRQ_FUNC(_num)}; \
static struct max32_spi_data max32_spi_data_##_num = { \
SPI_CONTEXT_INIT_LOCK(max32_spi_data_##_num, ctx), \
SPI_CONTEXT_INIT_SYNC(max32_spi_data_##_num, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(_num), ctx)}; \
DEVICE_DT_INST_DEFINE(_num, spi_max32_init, NULL, &max32_spi_data_##_num, \
&max32_spi_config_##_num, PRE_KERNEL_2, CONFIG_SPI_INIT_PRIORITY, \
&spi_max32_api);
DT_INST_FOREACH_STATUS_OKAY(DEFINE_SPI_MAX32)