zephyr/drivers/spi/spi_b_renesas_ra8.c

772 lines
28 KiB
C

/*
* Copyright (c) 2024 Renesas Electronics Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_ra8_spi_b
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control/renesas_ra_cgc.h>
#include <zephyr/irq.h>
#include <soc.h>
#include <instances/r_dtc.h>
#include <instances/r_spi_b.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(ra8_spi_b);
#include "spi_context.h"
#if defined(CONFIG_SPI_B_INTERRUPT)
void spi_b_rxi_isr(void);
void spi_b_txi_isr(void);
void spi_b_tei_isr(void);
void spi_b_eri_isr(void);
#endif
struct ra_spi_config {
const struct pinctrl_dev_config *pcfg;
const struct device *clock_dev;
const struct clock_control_ra_subsys_cfg clock_subsys;
};
struct ra_spi_data {
struct spi_context ctx;
uint8_t dfs;
struct st_spi_b_instance_ctrl spi;
struct st_spi_cfg fsp_config;
struct st_spi_b_extended_cfg fsp_config_extend;
#if CONFIG_SPI_B_INTERRUPT
uint32_t data_len;
#endif
#if defined(CONFIG_SPI_B_RA_DTC)
/* RX */
struct st_transfer_instance rx_transfer;
struct st_dtc_instance_ctrl rx_transfer_ctrl;
struct st_transfer_info rx_transfer_info;
struct st_transfer_cfg rx_transfer_cfg;
struct st_dtc_extended_cfg rx_transfer_cfg_extend;
/* TX */
struct st_transfer_instance tx_transfer;
struct st_dtc_instance_ctrl tx_transfer_ctrl;
struct st_transfer_info tx_transfer_info;
struct st_transfer_cfg tx_transfer_cfg;
struct st_dtc_extended_cfg tx_transfer_cfg_extend;
#endif
};
static void spi_cb(spi_callback_args_t *p_args)
{
struct device *dev = (struct device *)p_args->p_context;
struct ra_spi_data *data = dev->data;
switch (p_args->event) {
case SPI_EVENT_TRANSFER_COMPLETE:
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
break;
case SPI_EVENT_ERR_MODE_FAULT: /* Mode fault error */
case SPI_EVENT_ERR_READ_OVERFLOW: /* Read overflow error */
case SPI_EVENT_ERR_PARITY: /* Parity error */
case SPI_EVENT_ERR_OVERRUN: /* Overrun error */
case SPI_EVENT_ERR_FRAMING: /* Framing error */
case SPI_EVENT_ERR_MODE_UNDERRUN: /* Underrun error */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, -EIO);
break;
default:
break;
}
}
static int ra_spi_b_configure(const struct device *dev, const struct spi_config *config)
{
struct ra_spi_data *data = dev->data;
fsp_err_t fsp_err;
if (spi_context_configured(&data->ctx, config)) {
/* Nothing to do */
return 0;
}
fsp_err = R_SPI_B_Close(&data->spi);
if ((config->operation & SPI_FRAME_FORMAT_TI) == SPI_FRAME_FORMAT_TI) {
return -ENOTSUP;
}
if (config->operation & SPI_OP_MODE_SLAVE) {
data->fsp_config.operating_mode = SPI_MODE_SLAVE;
} else {
data->fsp_config.operating_mode = SPI_MODE_MASTER;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPOL) {
data->fsp_config.clk_polarity = SPI_CLK_POLARITY_HIGH;
} else {
data->fsp_config.clk_polarity = SPI_CLK_POLARITY_LOW;
}
if (SPI_MODE_GET(config->operation) & SPI_MODE_CPHA) {
data->fsp_config.clk_phase = SPI_CLK_PHASE_EDGE_EVEN;
} else {
data->fsp_config.clk_phase = SPI_CLK_PHASE_EDGE_ODD;
}
if (config->operation & SPI_TRANSFER_LSB) {
data->fsp_config.bit_order = SPI_BIT_ORDER_LSB_FIRST;
} else {
data->fsp_config.bit_order = SPI_BIT_ORDER_MSB_FIRST;
}
if (config->frequency > 0) {
fsp_err = R_SPI_B_CalculateBitrate(config->frequency,
data->fsp_config_extend.clock_source,
&data->fsp_config_extend.spck_div);
__ASSERT(fsp_err == 0, "spi_b: spi frequency calculate error: %d", fsp_err);
}
data->fsp_config_extend.spi_comm = SPI_B_COMMUNICATION_FULL_DUPLEX;
if (spi_cs_is_gpio(config) || !IS_ENABLED(CONFIG_SPI_B_USE_HW_SS)) {
data->fsp_config_extend.spi_clksyn = SPI_B_SSL_MODE_CLK_SYN;
} else {
data->fsp_config_extend.spi_clksyn = SPI_B_SSL_MODE_SPI;
data->fsp_config_extend.ssl_select = SPI_B_SSL_SELECT_SSL0;
}
data->fsp_config.p_extend = &data->fsp_config_extend;
data->fsp_config.p_callback = spi_cb;
data->fsp_config.p_context = dev;
fsp_err = R_SPI_B_Open(&data->spi, &data->fsp_config);
if (fsp_err != FSP_SUCCESS) {
LOG_ERR("R_SPI_B_Open error: %d", fsp_err);
return -EINVAL;
}
data->ctx.config = config;
return 0;
}
static bool ra_spi_b_transfer_ongoing(struct ra_spi_data *data)
{
#if defined(CONFIG_SPI_B_INTERRUPT)
return (spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx));
#else
if (spi_context_total_tx_len(&data->ctx) < spi_context_total_rx_len(&data->ctx)) {
return (spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx));
} else {
return (spi_context_tx_on(&data->ctx) && spi_context_rx_on(&data->ctx));
}
#endif
}
#ifndef CONFIG_SPI_B_INTERRUPT
static int ra_spi_b_transceive_slave(struct ra_spi_data *data)
{
R_SPI_B0_Type *p_spi_reg = data->spi.p_regs;
if (p_spi_reg->SPSR_b.SPTEF && spi_context_tx_on(&data->ctx)) {
uint32_t tx;
if (data->ctx.tx_buf != NULL) {
if (data->dfs > 2) {
tx = *(uint32_t *)(data->ctx.tx_buf);
} else if (data->dfs > 1) {
tx = *(uint16_t *)(data->ctx.tx_buf);
} else {
tx = *(uint8_t *)(data->ctx.tx_buf);
}
} else {
tx = 0;
}
/* Clear Transmit Empty flag */
p_spi_reg->SPSRC = R_SPI_B0_SPSRC_SPTEFC_Msk;
p_spi_reg->SPDR = tx;
spi_context_update_tx(&data->ctx, data->dfs, 1);
} else {
p_spi_reg->SPCR_b.SPTIE = 0;
}
if (p_spi_reg->SPSR_b.SPRF && spi_context_rx_buf_on(&data->ctx)) {
uint32_t rx;
rx = p_spi_reg->SPDR;
/* Clear Receive Full flag */
p_spi_reg->SPSRC = R_SPI_B0_SPSRC_SPRFC_Msk;
if (data->dfs > 2) {
UNALIGNED_PUT(rx, (uint32_t *)data->ctx.rx_buf);
} else if (data->dfs > 1) {
UNALIGNED_PUT(rx, (uint16_t *)data->ctx.rx_buf);
} else {
UNALIGNED_PUT(rx, (uint8_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, data->dfs, 1);
}
return 0;
}
static int ra_spi_b_transceive_master(struct ra_spi_data *data)
{
R_SPI_B0_Type *p_spi_reg = data->spi.p_regs;
uint32_t tx;
uint32_t rx;
/* Tx transfer*/
if (spi_context_tx_buf_on(&data->ctx)) {
if (data->dfs > 2) {
tx = *(uint32_t *)(data->ctx.tx_buf);
} else if (data->dfs > 1) {
tx = *(uint16_t *)(data->ctx.tx_buf);
} else {
tx = *(uint8_t *)(data->ctx.tx_buf);
}
} else {
tx = 0U;
}
while (!p_spi_reg->SPSR_b.SPTEF) {
}
p_spi_reg->SPDR = tx;
/* Clear Transmit Empty flag */
p_spi_reg->SPSRC = R_SPI_B0_SPSRC_SPTEFC_Msk;
spi_context_update_tx(&data->ctx, data->dfs, 1);
/* Rx receive */
if (spi_context_rx_on(&data->ctx)) {
while (!p_spi_reg->SPSR_b.SPRF) {
}
rx = p_spi_reg->SPDR;
/* Clear Receive Full flag */
p_spi_reg->SPSRC = R_SPI_B0_SPSRC_SPRFC_Msk;
if (data->dfs > 2) {
UNALIGNED_PUT(rx, (uint32_t *)data->ctx.rx_buf);
} else if (data->dfs > 1) {
UNALIGNED_PUT(rx, (uint16_t *)data->ctx.rx_buf);
} else {
UNALIGNED_PUT(rx, (uint8_t *)data->ctx.rx_buf);
}
spi_context_update_rx(&data->ctx, data->dfs, 1);
}
return 0;
}
static int ra_spi_b_transceive_data(struct ra_spi_data *data)
{
uint16_t operation = data->ctx.config->operation;
if (SPI_OP_MODE_GET(operation) == SPI_OP_MODE_MASTER) {
ra_spi_b_transceive_master(data);
} else {
ra_spi_b_transceive_slave(data);
}
return 0;
}
#endif
static int transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
bool asynchronous, spi_callback_t cb, void *userdata)
{
struct ra_spi_data *data = dev->data;
R_SPI_B0_Type *p_spi_reg;
int ret = 0;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_B_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif
spi_context_lock(&data->ctx, asynchronous, cb, userdata, config);
ret = ra_spi_b_configure(dev, config);
if (ret) {
goto end;
}
data->dfs = ((SPI_WORD_SIZE_GET(config->operation) - 1) / 8) + 1;
p_spi_reg = data->spi.p_regs;
/* Set buffers info */
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, data->dfs);
spi_context_cs_control(&data->ctx, true);
#ifdef CONFIG_SPI_B_INTERRUPT
spi_bit_width_t spi_width =
(spi_bit_width_t)(SPI_WORD_SIZE_GET(data->ctx.config->operation) - 1);
if (data->ctx.rx_len == 0) {
data->data_len = spi_context_is_slave(&data->ctx)
? spi_context_total_tx_len(&data->ctx)
: data->ctx.tx_len;
} else if (data->ctx.tx_len == 0) {
data->data_len = spi_context_is_slave(&data->ctx)
? spi_context_total_rx_len(&data->ctx)
: data->ctx.rx_len;
} else {
data->data_len = spi_context_is_slave(&data->ctx)
? MAX(spi_context_total_tx_len(&data->ctx),
spi_context_total_rx_len(&data->ctx))
: MIN(data->ctx.tx_len, data->ctx.rx_len);
}
if (data->ctx.rx_buf == NULL) {
R_SPI_B_Write(&data->spi, data->ctx.tx_buf, data->data_len, spi_width);
} else if (data->ctx.tx_buf == NULL) {
R_SPI_B_Read(&data->spi, data->ctx.rx_buf, data->data_len, spi_width);
} else {
R_SPI_B_WriteRead(&data->spi, data->ctx.tx_buf, data->ctx.rx_buf, data->data_len,
spi_width);
}
ret = spi_context_wait_for_completion(&data->ctx);
#else
p_spi_reg->SPCR_b.TXMD = 0x0; /* tx - rx*/
if (!spi_context_tx_on(&data->ctx)) {
p_spi_reg->SPCR_b.TXMD = 0x2; /* rx only */
}
if (!spi_context_rx_on(&data->ctx)) {
p_spi_reg->SPCR_b.TXMD = 0x1; /* tx only */
}
/* Clear FIFOs */
p_spi_reg->SPFCR = 1;
/* Enable the SPI Transfer. */
p_spi_reg->SPCR_b.SPE = 1;
p_spi_reg->SPCMD0 |= (uint32_t)(SPI_WORD_SIZE_GET(data->ctx.config->operation) - 1)
<< R_SPI_B0_SPCMD0_SPB_Pos;
do {
ra_spi_b_transceive_data(data);
} while (ra_spi_b_transfer_ongoing(data));
/* Wait for transmision complete */
while (p_spi_reg->SPSR_b.IDLNF) {
}
/* Disable the SPI Transfer. */
p_spi_reg->SPCR_b.SPE = 0;
#endif
#ifdef CONFIG_SPI_SLAVE
if (spi_context_is_slave(&data->ctx) && !ret) {
ret = data->ctx.recv_frames;
}
#endif /* CONFIG_SPI_SLAVE */
end:
spi_context_release(&data->ctx, ret);
return ret;
}
static int ra_spi_b_transceive(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs)
{
return transceive(dev, config, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int ra_spi_b_transceive_async(const struct device *dev, const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs, spi_callback_t cb,
void *userdata)
{
return transceive(dev, config, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int ra_spi_b_release(const struct device *dev, const struct spi_config *config)
{
struct ra_spi_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api ra_spi_driver_api = {.transceive = ra_spi_b_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async =
ra_spi_b_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
.release = ra_spi_b_release};
static spi_b_clock_source_t ra_spi_b_clock_name(const struct device *clock_dev)
{
const char *clock_dev_name = clock_dev->name;
if (strcmp(clock_dev_name, "spiclk") == 0 || strcmp(clock_dev_name, "scispiclk") == 0) {
return SPI_B_CLOCK_SOURCE_SCISPICLK;
}
return SPI_B_CLOCK_SOURCE_PCLK;
}
static int spi_b_ra_init(const struct device *dev)
{
const struct ra_spi_config *config = dev->config;
struct ra_spi_data *data = dev->data;
int ret;
if (!device_is_ready(config->clock_dev)) {
return -ENODEV;
}
data->fsp_config_extend.clock_source = ra_spi_b_clock_name(config->clock_dev);
/* Configure dt provided device signals when available */
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#if defined(CONFIG_SPI_B_INTERRUPT)
static void ra_spi_retransmit(struct ra_spi_data *data)
{
spi_bit_width_t spi_width =
(spi_bit_width_t)(SPI_WORD_SIZE_GET(data->ctx.config->operation) - 1);
if (data->ctx.rx_len == 0) {
data->data_len = data->ctx.tx_len;
data->spi.p_tx_data = data->ctx.tx_buf;
data->spi.p_rx_data = NULL;
} else if (data->ctx.tx_len == 0) {
data->data_len = data->ctx.rx_len;
data->spi.p_tx_data = NULL;
data->spi.p_rx_data = data->ctx.rx_buf;
} else {
data->data_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
data->spi.p_tx_data = data->ctx.tx_buf;
data->spi.p_rx_data = data->ctx.rx_buf;
}
data->spi.bit_width = spi_width;
data->spi.rx_count = 0;
data->spi.tx_count = 0;
data->spi.count = data->data_len;
#ifdef CONFIG_SPI_B_RA_DTC
/* Determine DTC transfer size */
transfer_size_t size;
if (spi_width > SPI_BIT_WIDTH_16_BITS) { /* Bit Widths of 17-32 bits */
size = TRANSFER_SIZE_4_BYTE;
} else if (spi_width > SPI_BIT_WIDTH_8_BITS) { /* Bit Widths of 9-16 bits*/
size = TRANSFER_SIZE_2_BYTE;
} else { /* Bit Widths of 4-8 bits */
size = TRANSFER_SIZE_1_BYTE;
}
if (data->spi.p_cfg->p_transfer_rx) {
/* When the rxi interrupt is called, all transfers will be finished. */
data->spi.rx_count = data->data_len;
transfer_instance_t *p_transfer_rx =
(transfer_instance_t *)data->spi.p_cfg->p_transfer_rx;
transfer_info_t *p_info = p_transfer_rx->p_cfg->p_info;
/* Configure the receive DMA instance. */
p_info->transfer_settings_word_b.size = size;
p_info->length = (uint16_t)data->data_len;
p_info->transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED;
p_info->p_dest = data->ctx.rx_buf;
if (NULL == data->ctx.rx_buf) {
static uint32_t dummy_rx;
p_info->transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_FIXED;
p_info->p_dest = &dummy_rx;
}
p_transfer_rx->p_api->reconfigure(p_transfer_rx->p_ctrl, p_info);
}
if (data->spi.p_cfg->p_transfer_tx) {
/* When the txi interrupt is called, all transfers will be finished. */
data->spi.tx_count = data->data_len;
transfer_instance_t *p_transfer_tx =
(transfer_instance_t *)data->spi.p_cfg->p_transfer_tx;
transfer_info_t *p_info = p_transfer_tx->p_cfg->p_info;
/* Configure the transmit DMA instance. */
p_info->transfer_settings_word_b.size = size;
p_info->length = (uint16_t)data->data_len;
p_info->transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED;
p_info->p_src = data->ctx.tx_buf;
if (NULL == data->ctx.tx_buf) {
static uint32_t dummy_tx;
p_info->transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED;
p_info->p_src = &dummy_tx;
}
p_transfer_tx->p_api->reconfigure(p_transfer_tx->p_ctrl, p_info);
}
#endif
data->spi.p_regs->SPSRC = R_SPI_B0_SPSRC_SPTEFC_Msk;
}
static void ra_spi_rxi_isr(const struct device *dev)
{
#ifndef CONFIG_SPI_SLAVE
ARG_UNUSED(dev);
spi_b_rxi_isr();
#else
struct ra_spi_data *data = dev->data;
spi_b_rxi_isr();
if (spi_context_is_slave(&data->ctx) && data->spi.rx_count == data->spi.count) {
if (data->ctx.rx_buf != NULL && data->ctx.tx_buf != NULL) {
data->ctx.recv_frames = MIN(spi_context_total_tx_len(&data->ctx),
spi_context_total_rx_len(&data->ctx));
} else if (data->ctx.tx_buf == NULL) {
data->ctx.recv_frames = data->data_len;
} else {
/* Do nothing */
}
R_BSP_IrqDisable(data->fsp_config.tei_irq);
/* Writing 0 to SPE generatates a TXI IRQ. Disable the TXI IRQ.
* (See Section 38.2.1 SPI Control Register in the RA6T2 manual R01UH0886EJ0100).
*/
R_BSP_IrqDisable(data->fsp_config.txi_irq);
/* Disable the SPI Transfer. */
data->spi.p_regs->SPCR_b.SPE = 0;
/* Re-enable the TXI IRQ and clear the pending IRQ. */
R_BSP_IrqEnable(data->fsp_config.txi_irq);
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
}
#endif
}
static void ra_spi_txi_isr(const struct device *dev)
{
ARG_UNUSED(dev);
spi_b_txi_isr();
}
static void ra_spi_tei_isr(const struct device *dev)
{
struct ra_spi_data *data = dev->data;
if (data->spi.rx_count == data->spi.count) {
spi_context_update_rx(&data->ctx, 1, data->data_len);
}
if (data->spi.tx_count == data->spi.count) {
spi_context_update_tx(&data->ctx, 1, data->data_len);
}
if (ra_spi_b_transfer_ongoing(data)) {
R_ICU->IELSR_b[data->fsp_config.tei_irq].IR = 0U;
ra_spi_retransmit(data);
} else {
spi_b_tei_isr();
}
}
static void ra_spi_eri_isr(const struct device *dev)
{
ARG_UNUSED(dev);
spi_b_eri_isr();
}
#endif
#define _ELC_EVENT_SPI_RXI(channel) ELC_EVENT_SPI##channel##_RXI
#define _ELC_EVENT_SPI_TXI(channel) ELC_EVENT_SPI##channel##_TXI
#define _ELC_EVENT_SPI_TEI(channel) ELC_EVENT_SPI##channel##_TEI
#define _ELC_EVENT_SPI_ERI(channel) ELC_EVENT_SPI##channel##_ERI
#define ELC_EVENT_SPI_RXI(channel) _ELC_EVENT_SPI_RXI(channel)
#define ELC_EVENT_SPI_TXI(channel) _ELC_EVENT_SPI_TXI(channel)
#define ELC_EVENT_SPI_TEI(channel) _ELC_EVENT_SPI_TEI(channel)
#define ELC_EVENT_SPI_ERI(channel) _ELC_EVENT_SPI_ERI(channel)
#if defined(CONFIG_SPI_B_INTERRUPT)
#define RA_SPI_B_IRQ_CONFIG_INIT(index) \
do { \
ARG_UNUSED(dev); \
\
R_ICU->IELSR[DT_INST_IRQ_BY_NAME(index, rxi, irq)] = \
ELC_EVENT_SPI_RXI(DT_INST_PROP(index, channel)); \
R_ICU->IELSR[DT_INST_IRQ_BY_NAME(index, txi, irq)] = \
ELC_EVENT_SPI_TXI(DT_INST_PROP(index, channel)); \
R_ICU->IELSR[DT_INST_IRQ_BY_NAME(index, tei, irq)] = \
ELC_EVENT_SPI_TEI(DT_INST_PROP(index, channel)); \
R_ICU->IELSR[DT_INST_IRQ_BY_NAME(index, eri, irq)] = \
ELC_EVENT_SPI_ERI(DT_INST_PROP(index, channel)); \
\
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, rxi, irq), \
DT_INST_IRQ_BY_NAME(index, rxi, priority), ra_spi_rxi_isr, \
DEVICE_DT_INST_GET(index), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, txi, irq), \
DT_INST_IRQ_BY_NAME(index, txi, priority), ra_spi_txi_isr, \
DEVICE_DT_INST_GET(index), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, tei, irq), \
DT_INST_IRQ_BY_NAME(index, tei, priority), ra_spi_tei_isr, \
DEVICE_DT_INST_GET(index), 0); \
IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, eri, irq), \
DT_INST_IRQ_BY_NAME(index, eri, priority), ra_spi_eri_isr, \
DEVICE_DT_INST_GET(index), 0); \
\
irq_enable(DT_INST_IRQ_BY_NAME(index, rxi, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(index, txi, irq)); \
irq_enable(DT_INST_IRQ_BY_NAME(index, eri, irq)); \
} while (0)
#else
#define RA_SPI_B_IRQ_CONFIG_INIT(index)
#endif
#ifndef CONFIG_SPI_B_RA_DTC
#define RA_SPI_B_DTC_STRUCT_INIT(index)
#define RA_SPI_B_DTC_INIT(index)
#else
#define RA_SPI_B_DTC_INIT(index) \
do { \
if (DT_INST_PROP_OR(index, rx_dtc, false)) { \
ra_spi_data_##index.fsp_config.p_transfer_rx = \
&ra_spi_data_##index.rx_transfer; \
} \
if (DT_INST_PROP_OR(index, tx_dtc, false)) { \
ra_spi_data_##index.fsp_config.p_transfer_tx = \
&ra_spi_data_##index.tx_transfer; \
} \
} while (0)
#define RA_SPI_B_DTC_STRUCT_INIT(index) \
.rx_transfer_info = \
{ \
.transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \
.transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_DESTINATION, \
.transfer_settings_word_b.irq = TRANSFER_IRQ_END, \
.transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \
.transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_FIXED, \
.transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \
.transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \
.p_dest = (void *)NULL, \
.p_src = (void const *)NULL, \
.num_blocks = 0, \
.length = 0, \
}, \
.rx_transfer_cfg_extend = {.activation_source = DT_INST_IRQ_BY_NAME(index, rxi, irq)}, \
.rx_transfer_cfg = \
{ \
.p_info = &ra_spi_data_##index.rx_transfer_info, \
.p_extend = &ra_spi_data_##index.rx_transfer_cfg_extend, \
}, \
.rx_transfer = \
{ \
.p_ctrl = &ra_spi_data_##index.rx_transfer_ctrl, \
.p_cfg = &ra_spi_data_##index.rx_transfer_cfg, \
.p_api = &g_transfer_on_dtc, \
}, \
.tx_transfer_info = \
{ \
.transfer_settings_word_b.dest_addr_mode = TRANSFER_ADDR_MODE_FIXED, \
.transfer_settings_word_b.repeat_area = TRANSFER_REPEAT_AREA_SOURCE, \
.transfer_settings_word_b.irq = TRANSFER_IRQ_END, \
.transfer_settings_word_b.chain_mode = TRANSFER_CHAIN_MODE_DISABLED, \
.transfer_settings_word_b.src_addr_mode = TRANSFER_ADDR_MODE_INCREMENTED, \
.transfer_settings_word_b.size = TRANSFER_SIZE_1_BYTE, \
.transfer_settings_word_b.mode = TRANSFER_MODE_NORMAL, \
.p_dest = (void *)NULL, \
.p_src = (void const *)NULL, \
.num_blocks = 0, \
.length = 0, \
}, \
.tx_transfer_cfg_extend = {.activation_source = DT_INST_IRQ_BY_NAME(index, txi, irq)}, \
.tx_transfer_cfg = \
{ \
.p_info = &ra_spi_data_##index.tx_transfer_info, \
.p_extend = &ra_spi_data_##index.tx_transfer_cfg_extend, \
}, \
.tx_transfer = { \
.p_ctrl = &ra_spi_data_##index.tx_transfer_ctrl, \
.p_cfg = &ra_spi_data_##index.tx_transfer_cfg, \
.p_api = &g_transfer_on_dtc, \
},
#endif
#define RA_SPI_INIT(index) \
\
PINCTRL_DT_INST_DEFINE(index); \
\
static const struct ra_spi_config ra_spi_config_##index = { \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(index)), \
.clock_subsys = \
{ \
.mstp = (uint32_t)DT_INST_CLOCKS_CELL_BY_NAME(index, spiclk, \
mstp), \
.stop_bit = DT_INST_CLOCKS_CELL_BY_NAME(index, spiclk, stop_bit), \
}, \
}; \
\
static struct ra_spi_data ra_spi_data_##index = { \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(index), ctx) \
SPI_CONTEXT_INIT_LOCK(ra_spi_data_##index, ctx), \
SPI_CONTEXT_INIT_SYNC(ra_spi_data_##index, ctx), \
.fsp_config = \
{ \
.channel = DT_INST_PROP(index, channel), \
.rxi_ipl = DT_INST_IRQ_BY_NAME(index, rxi, priority), \
.rxi_irq = DT_INST_IRQ_BY_NAME(index, rxi, irq), \
.txi_ipl = DT_INST_IRQ_BY_NAME(index, txi, priority), \
.txi_irq = DT_INST_IRQ_BY_NAME(index, txi, irq), \
.tei_ipl = DT_INST_IRQ_BY_NAME(index, tei, priority), \
.tei_irq = DT_INST_IRQ_BY_NAME(index, tei, irq), \
.eri_ipl = DT_INST_IRQ_BY_NAME(index, eri, priority), \
.eri_irq = DT_INST_IRQ_BY_NAME(index, eri, irq), \
}, \
RA_SPI_B_DTC_STRUCT_INIT(index)}; \
\
static int spi_b_ra_init##index(const struct device *dev) \
{ \
RA_SPI_B_DTC_INIT(index); \
int err = spi_b_ra_init(dev); \
if (err != 0) { \
return err; \
} \
RA_SPI_B_IRQ_CONFIG_INIT(index); \
return 0; \
} \
\
DEVICE_DT_INST_DEFINE(index, spi_b_ra_init##index, PM_DEVICE_DT_INST_GET(index), \
&ra_spi_data_##index, &ra_spi_config_##index, POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, &ra_spi_driver_api);
DT_INST_FOREACH_STATUS_OKAY(RA_SPI_INIT)