zephyr/drivers/spi/spi_b91.c

495 lines
13 KiB
C

/*
* Copyright (c) 2021 Telink Semiconductor
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT telink_b91_spi
/* Redefine 'spi_read' and 'spi_write' functions names from HAL */
#define spi_read hal_spi_read
#define spi_write hal_spi_write
#include "spi.c"
#undef spi_read
#undef spi_write
#include "clock.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_telink);
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include "spi_context.h"
#include <zephyr/drivers/pinctrl.h>
#define CHIP_SELECT_COUNT 3u
#define SPI_WORD_SIZE 8u
#define SPI_WR_RD_CHUNK_SIZE_MAX 16u
/* SPI configuration structure */
struct spi_b91_cfg {
uint8_t peripheral_id;
gpio_pin_e cs_pin[CHIP_SELECT_COUNT];
const struct pinctrl_dev_config *pcfg;
};
#define SPI_CFG(dev) ((struct spi_b91_cfg *) ((dev)->config))
/* SPI data structure */
struct spi_b91_data {
struct spi_context ctx;
};
#define SPI_DATA(dev) ((struct spi_b91_data *) ((dev)->data))
/* disable hardware cs flow control */
static void spi_b91_hw_cs_disable(const struct spi_b91_cfg *config)
{
gpio_pin_e pin;
/* loop through all cs pins (cs0..cs2) */
for (int i = 0; i < CHIP_SELECT_COUNT; i++) {
/* get CS pin defined in device tree */
pin = config->cs_pin[i];
/* if CS pin is defined in device tree */
if (pin != 0) {
if (config->peripheral_id == PSPI_MODULE) {
/* disable CS pin for PSPI */
pspi_cs_pin_dis(pin);
} else {
/* disable CS pin for MSPI */
hspi_cs_pin_dis(pin);
}
}
}
}
/* config cs flow control: hardware or software */
static bool spi_b91_config_cs(const struct device *dev,
const struct spi_config *config)
{
pspi_csn_pin_def_e cs_pin = 0;
const struct spi_b91_cfg *b91_config = SPI_CFG(dev);
/* software flow control */
if (spi_cs_is_gpio(config)) {
/* disable all hardware CS pins */
spi_b91_hw_cs_disable(b91_config);
return true;
}
/* hardware flow control */
/* check for correct slave id */
if (config->slave >= CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d not supported (max. %d)", config->slave, CHIP_SELECT_COUNT - 1);
return false;
}
/* loop through all cs pins: cs0, cs1 and cs2 */
for (int cs_id = 0; cs_id < CHIP_SELECT_COUNT; cs_id++) {
/* get cs pin defined in device tree */
cs_pin = b91_config->cs_pin[cs_id];
/* if cs pin is not defined for the selected slave, return error */
if ((cs_pin == 0) && (cs_id == config->slave)) {
LOG_ERR("cs%d-pin is not defined in device tree", config->slave);
return false;
}
/* disable cs pin if it is defined and is not requested */
if ((cs_pin != 0) && (cs_id != config->slave)) {
if (b91_config->peripheral_id == PSPI_MODULE) {
pspi_cs_pin_dis(cs_pin);
} else {
hspi_cs_pin_dis(cs_pin);
}
}
/* enable cs pin if it is defined and is requested */
if ((cs_pin != 0) && (cs_id == config->slave)) {
if (b91_config->peripheral_id == PSPI_MODULE) {
pspi_set_pin_mux(cs_pin);
pspi_cs_pin_en(cs_pin);
} else {
hspi_set_pin_mux(cs_pin);
hspi_cs_pin_en(cs_pin);
}
}
}
return true;
}
/* get spi transaction length */
static uint32_t spi_b91_get_txrx_len(const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
uint32_t len_tx = 0;
uint32_t len_rx = 0;
const struct spi_buf *tx_buf = tx_bufs->buffers;
const struct spi_buf *rx_buf = rx_bufs->buffers;
/* calculate tx len */
for (int i = 0; i < tx_bufs->count; i++) {
len_tx += tx_buf->len;
tx_buf++;
}
/* calculate rx len */
for (int i = 0; i < rx_bufs->count; i++) {
len_rx += rx_buf->len;
rx_buf++;
}
return MAX(len_tx, len_rx);
}
/* process tx data */
_attribute_ram_code_sec_
static void spi_b91_tx(uint8_t peripheral_id, struct spi_context *ctx, uint8_t len)
{
uint8_t tx;
for (int i = 0; i < len; i++) {
if (spi_context_tx_buf_on(ctx)) {
tx = *(uint8_t *)(ctx->tx_buf);
} else {
tx = 0;
}
spi_context_update_tx(ctx, 1, 1);
while (reg_spi_fifo_state(peripheral_id) & FLD_SPI_TXF_FULL) {
};
reg_spi_wr_rd_data(peripheral_id, i % 4) = tx;
}
}
/* process rx data */
_attribute_ram_code_sec_
static void spi_b91_rx(uint8_t peripheral_id, struct spi_context *ctx, uint8_t len)
{
uint8_t rx = 0;
for (int i = 0; i < len; i++) {
while (reg_spi_fifo_state(peripheral_id) & FLD_SPI_RXF_EMPTY) {
};
rx = reg_spi_wr_rd_data(peripheral_id, i % 4);
if (spi_context_rx_buf_on(ctx)) {
*ctx->rx_buf = rx;
}
spi_context_update_rx(ctx, 1, 1);
}
}
/* SPI transceive internal */
_attribute_ram_code_sec_
static void spi_b91_txrx(const struct device *dev, uint32_t len)
{
unsigned int chunk_size = SPI_WR_RD_CHUNK_SIZE_MAX;
struct spi_b91_cfg *cfg = SPI_CFG(dev);
struct spi_context *ctx = &SPI_DATA(dev)->ctx;
/* prepare SPI module */
spi_set_transmode(cfg->peripheral_id, SPI_MODE_WRITE_AND_READ);
spi_set_cmd(cfg->peripheral_id, 0);
spi_tx_cnt(cfg->peripheral_id, len);
spi_rx_cnt(cfg->peripheral_id, len);
/* write and read bytes in chunks */
for (int i = 0; i < len; i = i + chunk_size) {
/* check for tail */
if (chunk_size > (len - i)) {
chunk_size = len - i;
}
/* write bytes */
spi_b91_tx(cfg->peripheral_id, ctx, chunk_size);
/* read bytes */
if (len <= SPI_WR_RD_CHUNK_SIZE_MAX) {
/* read all bytes if len is less than chunk size */
spi_b91_rx(cfg->peripheral_id, ctx, chunk_size);
} else if (i == 0) {
/* head, read 1 byte less than is sent */
spi_b91_rx(cfg->peripheral_id, ctx, chunk_size - 1);
} else if ((len - i) > SPI_WR_RD_CHUNK_SIZE_MAX) {
/* body, read so many bytes as is sent*/
spi_b91_rx(cfg->peripheral_id, ctx, chunk_size);
} else {
/* tail, read the rest bytes */
spi_b91_rx(cfg->peripheral_id, ctx, chunk_size + 1);
}
/* clear TX and RX fifo */
BM_SET(reg_spi_fifo_state(cfg->peripheral_id), FLD_SPI_TXF_CLR);
BM_SET(reg_spi_fifo_state(cfg->peripheral_id), FLD_SPI_RXF_CLR);
}
/* wait for SPI is ready */
while (spi_is_busy(cfg->peripheral_id)) {
};
/* context complete */
spi_context_complete(ctx, dev, 0);
}
/* Check for supported configuration */
static bool spi_b91_is_config_supported(const struct spi_config *config,
struct spi_b91_cfg *b91_config)
{
if (config->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return false;
}
/* check for loop back */
if (config->operation & SPI_MODE_LOOP) {
LOG_ERR("Loop back mode not supported");
return false;
}
/* check for transfer LSB first */
if (config->operation & SPI_TRANSFER_LSB) {
LOG_ERR("LSB first not supported");
return false;
}
/* check word size */
if (SPI_WORD_SIZE_GET(config->operation) != SPI_WORD_SIZE) {
LOG_ERR("Word size must be %d", SPI_WORD_SIZE);
return false;
}
/* check for CS active high */
if (config->operation & SPI_CS_ACTIVE_HIGH) {
LOG_ERR("CS active high not supported for HW flow control");
return false;
}
/* check for lines configuration */
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES)) {
if ((config->operation & SPI_LINES_MASK) == SPI_LINES_OCTAL) {
LOG_ERR("SPI lines Octal is not supported");
return false;
} else if (((config->operation & SPI_LINES_MASK) ==
SPI_LINES_QUAD) &&
(b91_config->peripheral_id == PSPI_MODULE)) {
LOG_ERR("SPI lines Quad is not supported by PSPI");
return false;
}
}
/* check for slave configuration */
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_SLAVE) {
LOG_ERR("SPI Slave is not implemented");
return -ENOTSUP;
}
return true;
}
/* SPI configuration */
static int spi_b91_config(const struct device *dev,
const struct spi_config *config)
{
int status = 0;
spi_mode_type_e mode = SPI_MODE0;
struct spi_b91_cfg *b91_config = SPI_CFG(dev);
struct spi_b91_data *b91_data = SPI_DATA(dev);
uint8_t clk_src = b91_config->peripheral_id == PSPI_MODULE ? sys_clk.pclk : sys_clk.hclk;
/* check for unsupported configuration */
if (!spi_b91_is_config_supported(config, b91_config)) {
return -ENOTSUP;
}
/* config slave selection (CS): hw or sw */
if (!spi_b91_config_cs(dev, config)) {
return -ENOTSUP;
}
/* get SPI mode */
if (((config->operation & SPI_MODE_CPHA) == 0) &&
((config->operation & SPI_MODE_CPOL) == 0)) {
mode = SPI_MODE0;
} else if (((config->operation & SPI_MODE_CPHA) == 0) &&
((config->operation & SPI_MODE_CPOL) == SPI_MODE_CPOL)) {
mode = SPI_MODE1;
} else if (((config->operation & SPI_MODE_CPHA) == SPI_MODE_CPHA) &&
((config->operation & SPI_MODE_CPOL) == 0)) {
mode = SPI_MODE2;
} else if (((config->operation & SPI_MODE_CPHA) == SPI_MODE_CPHA) &&
((config->operation & SPI_MODE_CPOL) == SPI_MODE_CPOL)) {
mode = SPI_MODE3;
}
/* init SPI master */
spi_master_init(b91_config->peripheral_id,
clk_src * 1000000 / (2 * config->frequency) - 1, mode);
spi_master_config(b91_config->peripheral_id, SPI_NOMAL);
/* set lines configuration */
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES)) {
uint32_t lines = config->operation & SPI_LINES_MASK;
if (lines == SPI_LINES_SINGLE) {
spi_set_io_mode(b91_config->peripheral_id,
SPI_SINGLE_MODE);
} else if (lines == SPI_LINES_DUAL) {
spi_set_io_mode(b91_config->peripheral_id,
SPI_DUAL_MODE);
} else if (lines == SPI_LINES_QUAD) {
spi_set_io_mode(b91_config->peripheral_id,
HSPI_QUAD_MODE);
}
}
/* configure pins */
status = pinctrl_apply_state(b91_config->pcfg, PINCTRL_STATE_DEFAULT);
if (status < 0) {
LOG_ERR("Failed to configure SPI pins");
return status;
}
/* save context config */
b91_data->ctx.config = config;
return 0;
}
/* API implementation: init */
static int spi_b91_init(const struct device *dev)
{
int err;
struct spi_b91_data *data = SPI_DATA(dev);
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
/* API implementation: transceive */
static int spi_b91_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
int status = 0;
struct spi_b91_data *data = SPI_DATA(dev);
uint32_t txrx_len = spi_b91_get_txrx_len(tx_bufs, rx_bufs);
/* set configuration */
status = spi_b91_config(dev, config);
if (status) {
return status;
}
/* context setup */
spi_context_lock(&data->ctx, false, NULL, NULL, config);
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
/* if cs is defined: software cs control, set active true */
if (spi_cs_is_gpio(config)) {
spi_context_cs_control(&data->ctx, true);
}
/* transceive data */
spi_b91_txrx(dev, txrx_len);
/* if cs is defined: software cs control, set active false */
if (spi_cs_is_gpio(config)) {
spi_context_cs_control(&data->ctx, false);
}
/* release context */
status = spi_context_wait_for_completion(&data->ctx);
spi_context_release(&data->ctx, status);
return status;
}
#ifdef CONFIG_SPI_ASYNC
/* API implementation: transceive_async */
static int spi_b91_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
ARG_UNUSED(dev);
ARG_UNUSED(config);
ARG_UNUSED(tx_bufs);
ARG_UNUSED(rx_bufs);
ARG_UNUSED(cb);
ARG_UNUSED(userdata);
return -ENOTSUP;
}
#endif /* CONFIG_SPI_ASYNC */
/* API implementation: release */
static int spi_b91_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_b91_data *data = SPI_DATA(dev);
if (!spi_context_configured(&data->ctx, config)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
/* SPI driver APIs structure */
static const struct spi_driver_api spi_b91_api = {
.transceive = spi_b91_transceive,
.release = spi_b91_release,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_b91_transceive_async,
#endif /* CONFIG_SPI_ASYNC */
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
};
/* SPI driver registration */
#define SPI_B91_INIT(inst) \
\
PINCTRL_DT_INST_DEFINE(inst); \
\
static struct spi_b91_data spi_b91_data_##inst = { \
SPI_CONTEXT_INIT_LOCK(spi_b91_data_##inst, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_b91_data_##inst, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(inst), ctx) \
}; \
\
static struct spi_b91_cfg spi_b91_cfg_##inst = { \
.peripheral_id = DT_INST_ENUM_IDX(inst, peripheral_id), \
.cs_pin[0] = DT_INST_STRING_TOKEN(inst, cs0_pin), \
.cs_pin[1] = DT_INST_STRING_TOKEN(inst, cs1_pin), \
.cs_pin[2] = DT_INST_STRING_TOKEN(inst, cs2_pin), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
}; \
\
DEVICE_DT_INST_DEFINE(inst, spi_b91_init, \
NULL, \
&spi_b91_data_##inst, \
&spi_b91_cfg_##inst, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_b91_api);
DT_INST_FOREACH_STATUS_OKAY(SPI_B91_INIT)