2472 lines
67 KiB
C
2472 lines
67 KiB
C
/*
|
|
* Copyright (c) 2016 Open-RnD Sp. z o.o.
|
|
* Copyright (c) 2016 Linaro Limited.
|
|
* Copyright (c) 2024 STMicroelectronics
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT st_stm32_uart
|
|
|
|
/**
|
|
* @brief Driver for UART port on STM32 family processor.
|
|
* @note LPUART and U(S)ART have the same base and
|
|
* majority of operations are performed the same way.
|
|
* Please validate for newly added series.
|
|
*/
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
#include <zephyr/sys/__assert.h>
|
|
#include <soc.h>
|
|
#include <zephyr/init.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/pm/policy.h>
|
|
#include <zephyr/pm/device.h>
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
#include <zephyr/drivers/dma/dma_stm32.h>
|
|
#include <zephyr/drivers/dma.h>
|
|
#endif
|
|
|
|
#include <zephyr/linker/sections.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include "uart_stm32.h"
|
|
|
|
#include <stm32_ll_usart.h>
|
|
#include <stm32_ll_lpuart.h>
|
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE)
|
|
#include <stm32_ll_exti.h>
|
|
#endif /* CONFIG_PM */
|
|
|
|
#ifdef CONFIG_DCACHE
|
|
#include <zephyr/linker/linker-defs.h>
|
|
#include <zephyr/mem_mgmt/mem_attr.h>
|
|
#include <zephyr/dt-bindings/memory-attr/memory-attr-arm.h>
|
|
#endif /* CONFIG_DCACHE */
|
|
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
LOG_MODULE_REGISTER(uart_stm32, CONFIG_UART_LOG_LEVEL);
|
|
|
|
/* This symbol takes the value 1 if one of the device instances */
|
|
/* is configured in dts with a domain clock */
|
|
#if STM32_DT_INST_DEV_DOMAIN_CLOCK_SUPPORT
|
|
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 1
|
|
#else
|
|
#define STM32_UART_DOMAIN_CLOCK_SUPPORT 0
|
|
#endif
|
|
|
|
#define HAS_LPUART DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart)
|
|
|
|
/* Available everywhere except l1, f1, f2, f4. */
|
|
#ifdef USART_CR3_DEM
|
|
#define HAS_DRIVER_ENABLE 1
|
|
#else
|
|
#define HAS_DRIVER_ENABLE 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
/* Placeholder value when wakeup-line DT property is not defined */
|
|
#define STM32_WAKEUP_LINE_NONE 0xFFFFFFFF
|
|
#endif
|
|
|
|
#if HAS_LPUART
|
|
#ifdef USART_PRESC_PRESCALER
|
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint16_t presc_idx,
|
|
const uint32_t baud_rate)
|
|
{
|
|
uint64_t lpuartdiv;
|
|
|
|
lpuartdiv = clock_rate / LPUART_PRESCALER_TAB[presc_idx];
|
|
lpuartdiv *= LPUART_LPUARTDIV_FREQ_MUL;
|
|
lpuartdiv += baud_rate / 2;
|
|
lpuartdiv /= baud_rate;
|
|
|
|
return (uint32_t)lpuartdiv;
|
|
}
|
|
#else
|
|
uint32_t lpuartdiv_calc(const uint64_t clock_rate, const uint32_t baud_rate)
|
|
{
|
|
uint64_t lpuartdiv;
|
|
|
|
lpuartdiv = clock_rate * LPUART_LPUARTDIV_FREQ_MUL;
|
|
lpuartdiv += baud_rate / 2;
|
|
lpuartdiv /= baud_rate;
|
|
|
|
return (uint32_t)lpuartdiv;
|
|
}
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
#endif /* HAS_LPUART */
|
|
|
|
#ifdef CONFIG_PM
|
|
static void uart_stm32_pm_policy_state_lock_get(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (!data->pm_policy_state_on) {
|
|
data->pm_policy_state_on = true;
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_pm_policy_state_lock_put(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (data->pm_policy_state_on) {
|
|
data->pm_policy_state_on = false;
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
|
|
if (IS_ENABLED(CONFIG_PM_S2RAM)) {
|
|
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_RAM, PM_ALL_SUBSTATES);
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
uint32_t clock_rate;
|
|
|
|
/* Get clock rate */
|
|
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
|
|
if (clock_control_get_rate(data->clock,
|
|
(clock_control_subsys_t)&config->pclken[1],
|
|
&clock_rate) < 0) {
|
|
LOG_ERR("Failed call clock_control_get_rate(pclken[1])");
|
|
return;
|
|
}
|
|
} else {
|
|
if (clock_control_get_rate(data->clock,
|
|
(clock_control_subsys_t)&config->pclken[0],
|
|
&clock_rate) < 0) {
|
|
LOG_ERR("Failed call clock_control_get_rate(pclken[0])");
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if HAS_LPUART
|
|
if (IS_LPUART_INSTANCE(usart)) {
|
|
uint32_t lpuartdiv;
|
|
#ifdef USART_PRESC_PRESCALER
|
|
uint8_t presc_idx;
|
|
uint32_t presc_val;
|
|
|
|
for (presc_idx = 0; presc_idx < ARRAY_SIZE(LPUART_PRESCALER_TAB); presc_idx++) {
|
|
lpuartdiv = lpuartdiv_calc(clock_rate, presc_idx, baud_rate);
|
|
if (lpuartdiv >= LPUART_BRR_MIN_VALUE && lpuartdiv <= LPUART_BRR_MASK) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (presc_idx == ARRAY_SIZE(LPUART_PRESCALER_TAB)) {
|
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
|
|
return;
|
|
}
|
|
|
|
presc_val = presc_idx << USART_PRESC_PRESCALER_Pos;
|
|
|
|
LL_LPUART_SetPrescaler(usart, presc_val);
|
|
#else
|
|
lpuartdiv = lpuartdiv_calc(clock_rate, baud_rate);
|
|
if (lpuartdiv < LPUART_BRR_MIN_VALUE || lpuartdiv > LPUART_BRR_MASK) {
|
|
LOG_ERR("Unable to set %s to %d", dev->name, baud_rate);
|
|
return;
|
|
}
|
|
#endif /* USART_PRESC_PRESCALER */
|
|
LL_LPUART_SetBaudRate(usart,
|
|
clock_rate,
|
|
#ifdef USART_PRESC_PRESCALER
|
|
presc_val,
|
|
#endif
|
|
baud_rate);
|
|
/* Check BRR is greater than or equal to 0x300 */
|
|
__ASSERT(LL_LPUART_ReadReg(usart, BRR) >= 0x300U,
|
|
"BaudRateReg >= 0x300");
|
|
|
|
/* Check BRR is lower than or equal to 0xFFFFF */
|
|
__ASSERT(LL_LPUART_ReadReg(usart, BRR) < 0x000FFFFFU,
|
|
"BaudRateReg < 0xFFFF");
|
|
} else {
|
|
#endif /* HAS_LPUART */
|
|
#ifdef USART_CR1_OVER8
|
|
LL_USART_SetOverSampling(usart,
|
|
LL_USART_OVERSAMPLING_16);
|
|
#endif
|
|
LL_USART_SetBaudRate(usart,
|
|
clock_rate,
|
|
#ifdef USART_PRESC_PRESCALER
|
|
LL_USART_PRESCALER_DIV1,
|
|
#endif
|
|
#ifdef USART_CR1_OVER8
|
|
LL_USART_OVERSAMPLING_16,
|
|
#endif
|
|
baud_rate);
|
|
/* Check BRR is greater than or equal to 16d */
|
|
__ASSERT(LL_USART_ReadReg(usart, BRR) >= 16,
|
|
"BaudRateReg >= 16");
|
|
|
|
#if HAS_LPUART
|
|
}
|
|
#endif /* HAS_LPUART */
|
|
}
|
|
|
|
static inline void uart_stm32_set_parity(const struct device *dev,
|
|
uint32_t parity)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_SetParity(config->usart, parity);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_parity(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_GetParity(config->usart);
|
|
}
|
|
|
|
static inline void uart_stm32_set_stopbits(const struct device *dev,
|
|
uint32_t stopbits)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_SetStopBitsLength(config->usart, stopbits);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_stopbits(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_GetStopBitsLength(config->usart);
|
|
}
|
|
|
|
static inline void uart_stm32_set_databits(const struct device *dev,
|
|
uint32_t databits)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_SetDataWidth(config->usart, databits);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_databits(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_GetDataWidth(config->usart);
|
|
}
|
|
|
|
static inline void uart_stm32_set_hwctrl(const struct device *dev,
|
|
uint32_t hwctrl)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_SetHWFlowCtrl(config->usart, hwctrl);
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_GetHWFlowCtrl(config->usart);
|
|
}
|
|
|
|
#if HAS_DRIVER_ENABLE
|
|
static inline void uart_stm32_set_driver_enable(const struct device *dev,
|
|
bool driver_enable)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
if (driver_enable) {
|
|
LL_USART_EnableDEMode(config->usart);
|
|
} else {
|
|
LL_USART_DisableDEMode(config->usart);
|
|
}
|
|
}
|
|
|
|
static inline bool uart_stm32_get_driver_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_IsEnabledDEMode(config->usart);
|
|
}
|
|
#endif
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity)
|
|
{
|
|
switch (parity) {
|
|
case UART_CFG_PARITY_ODD:
|
|
return LL_USART_PARITY_ODD;
|
|
case UART_CFG_PARITY_EVEN:
|
|
return LL_USART_PARITY_EVEN;
|
|
case UART_CFG_PARITY_NONE:
|
|
default:
|
|
return LL_USART_PARITY_NONE;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity)
|
|
{
|
|
switch (parity) {
|
|
case LL_USART_PARITY_ODD:
|
|
return UART_CFG_PARITY_ODD;
|
|
case LL_USART_PARITY_EVEN:
|
|
return UART_CFG_PARITY_EVEN;
|
|
case LL_USART_PARITY_NONE:
|
|
default:
|
|
return UART_CFG_PARITY_NONE;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_stopbits(const struct uart_stm32_config *config,
|
|
enum uart_config_stop_bits sb)
|
|
{
|
|
switch (sb) {
|
|
/* Some MCU's don't support 0.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_0_5
|
|
case UART_CFG_STOP_BITS_0_5:
|
|
#if HAS_LPUART
|
|
if (IS_LPUART_INSTANCE(config->usart)) {
|
|
/* return the default */
|
|
return LL_USART_STOPBITS_1;
|
|
}
|
|
#endif /* HAS_LPUART */
|
|
return LL_USART_STOPBITS_0_5;
|
|
#endif /* LL_USART_STOPBITS_0_5 */
|
|
case UART_CFG_STOP_BITS_1:
|
|
return LL_USART_STOPBITS_1;
|
|
/* Some MCU's don't support 1.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_1_5
|
|
case UART_CFG_STOP_BITS_1_5:
|
|
#if HAS_LPUART
|
|
if (IS_LPUART_INSTANCE(config->usart)) {
|
|
/* return the default */
|
|
return LL_USART_STOPBITS_2;
|
|
}
|
|
#endif
|
|
return LL_USART_STOPBITS_1_5;
|
|
#endif /* LL_USART_STOPBITS_1_5 */
|
|
case UART_CFG_STOP_BITS_2:
|
|
default:
|
|
return LL_USART_STOPBITS_2;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb)
|
|
{
|
|
switch (sb) {
|
|
/* Some MCU's don't support 0.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_0_5
|
|
case LL_USART_STOPBITS_0_5:
|
|
return UART_CFG_STOP_BITS_0_5;
|
|
#endif /* LL_USART_STOPBITS_0_5 */
|
|
case LL_USART_STOPBITS_1:
|
|
return UART_CFG_STOP_BITS_1;
|
|
/* Some MCU's don't support 1.5 stop bits */
|
|
#ifdef LL_USART_STOPBITS_1_5
|
|
case LL_USART_STOPBITS_1_5:
|
|
return UART_CFG_STOP_BITS_1_5;
|
|
#endif /* LL_USART_STOPBITS_1_5 */
|
|
case LL_USART_STOPBITS_2:
|
|
default:
|
|
return UART_CFG_STOP_BITS_2;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db,
|
|
enum uart_config_parity p)
|
|
{
|
|
switch (db) {
|
|
/* Some MCU's don't support 7B or 9B datawidth */
|
|
#ifdef LL_USART_DATAWIDTH_7B
|
|
case UART_CFG_DATA_BITS_7:
|
|
if (p == UART_CFG_PARITY_NONE) {
|
|
return LL_USART_DATAWIDTH_7B;
|
|
} else {
|
|
return LL_USART_DATAWIDTH_8B;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_7B */
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
case UART_CFG_DATA_BITS_9:
|
|
return LL_USART_DATAWIDTH_9B;
|
|
#endif /* LL_USART_DATAWIDTH_9B */
|
|
case UART_CFG_DATA_BITS_8:
|
|
default:
|
|
if (p == UART_CFG_PARITY_NONE) {
|
|
return LL_USART_DATAWIDTH_8B;
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
} else {
|
|
return LL_USART_DATAWIDTH_9B;
|
|
#endif
|
|
}
|
|
return LL_USART_DATAWIDTH_8B;
|
|
}
|
|
}
|
|
|
|
static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db,
|
|
uint32_t p)
|
|
{
|
|
switch (db) {
|
|
/* Some MCU's don't support 7B or 9B datawidth */
|
|
#ifdef LL_USART_DATAWIDTH_7B
|
|
case LL_USART_DATAWIDTH_7B:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_7;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_6;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_7B */
|
|
#ifdef LL_USART_DATAWIDTH_9B
|
|
case LL_USART_DATAWIDTH_9B:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_9;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_8;
|
|
}
|
|
#endif /* LL_USART_DATAWIDTH_9B */
|
|
case LL_USART_DATAWIDTH_8B:
|
|
default:
|
|
if (p == LL_USART_PARITY_NONE) {
|
|
return UART_CFG_DATA_BITS_8;
|
|
} else {
|
|
return UART_CFG_DATA_BITS_7;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get LL hardware flow control define from
|
|
* Zephyr hardware flow control option.
|
|
* @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS and UART_CFG_FLOW_CTRL_RS485.
|
|
* @param fc: Zephyr hardware flow control option.
|
|
* @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE.
|
|
*/
|
|
static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc)
|
|
{
|
|
if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) {
|
|
return LL_USART_HWCONTROL_RTS_CTS;
|
|
} else if (fc == UART_CFG_FLOW_CTRL_RS485) {
|
|
/* Driver Enable is handled separately */
|
|
return LL_USART_HWCONTROL_NONE;
|
|
}
|
|
|
|
return LL_USART_HWCONTROL_NONE;
|
|
}
|
|
|
|
/**
|
|
* @brief Get Zephyr hardware flow control option from
|
|
* LL hardware flow control define.
|
|
* @note Supports only LL_USART_HWCONTROL_RTS_CTS.
|
|
* @param fc: LL hardware flow control definition.
|
|
* @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE.
|
|
*/
|
|
static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc)
|
|
{
|
|
if (fc == LL_USART_HWCONTROL_RTS_CTS) {
|
|
return UART_CFG_FLOW_CTRL_RTS_CTS;
|
|
}
|
|
|
|
return UART_CFG_FLOW_CTRL_NONE;
|
|
}
|
|
|
|
static void uart_stm32_parameters_set(const struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
struct uart_config *uart_cfg = data->uart_cfg;
|
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
|
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits);
|
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits,
|
|
cfg->parity);
|
|
const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl);
|
|
#if HAS_DRIVER_ENABLE
|
|
bool driver_enable = cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485;
|
|
#endif
|
|
|
|
if (cfg == uart_cfg) {
|
|
/* Called via (re-)init function, so the SoC either just booted,
|
|
* or is returning from a low-power state where it lost register
|
|
* contents
|
|
*/
|
|
LL_USART_ConfigCharacter(config->usart,
|
|
databits,
|
|
parity,
|
|
stopbits);
|
|
uart_stm32_set_hwctrl(dev, flowctrl);
|
|
uart_stm32_set_baudrate(dev, cfg->baudrate);
|
|
} else {
|
|
/* Called from application/subsys via uart_configure syscall */
|
|
if (parity != uart_stm32_get_parity(dev)) {
|
|
uart_stm32_set_parity(dev, parity);
|
|
}
|
|
|
|
if (stopbits != uart_stm32_get_stopbits(dev)) {
|
|
uart_stm32_set_stopbits(dev, stopbits);
|
|
}
|
|
|
|
if (databits != uart_stm32_get_databits(dev)) {
|
|
uart_stm32_set_databits(dev, databits);
|
|
}
|
|
|
|
if (flowctrl != uart_stm32_get_hwctrl(dev)) {
|
|
uart_stm32_set_hwctrl(dev, flowctrl);
|
|
}
|
|
|
|
#if HAS_DRIVER_ENABLE
|
|
if (driver_enable != uart_stm32_get_driver_enable(dev)) {
|
|
uart_stm32_set_driver_enable(dev, driver_enable);
|
|
}
|
|
#endif
|
|
|
|
if (cfg->baudrate != uart_cfg->baudrate) {
|
|
uart_stm32_set_baudrate(dev, cfg->baudrate);
|
|
uart_cfg->baudrate = cfg->baudrate;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
static int uart_stm32_configure(const struct device *dev,
|
|
const struct uart_config *cfg)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
struct uart_config *uart_cfg = data->uart_cfg;
|
|
const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity);
|
|
const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(config, cfg->stop_bits);
|
|
const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits,
|
|
cfg->parity);
|
|
|
|
/* Hardware doesn't support mark or space parity */
|
|
if ((cfg->parity == UART_CFG_PARITY_MARK) ||
|
|
(cfg->parity == UART_CFG_PARITY_SPACE)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Driver does not supports parity + 9 databits */
|
|
if ((cfg->parity != UART_CFG_PARITY_NONE) &&
|
|
(cfg->data_bits == UART_CFG_DATA_BITS_9)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* When the transformed ll stop bits don't match with what was requested, then it's not
|
|
* supported
|
|
*/
|
|
if (uart_stm32_ll2cfg_stopbits(stopbits) != cfg->stop_bits) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* When the transformed ll databits don't match with what was requested, then it's not
|
|
* supported
|
|
*/
|
|
if (uart_stm32_ll2cfg_databits(databits, parity) != cfg->data_bits) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Driver supports only RTS/CTS and RS485 flow control */
|
|
if (!(cfg->flow_ctrl == UART_CFG_FLOW_CTRL_NONE
|
|
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS &&
|
|
IS_UART_HWFLOW_INSTANCE(usart))
|
|
#if HAS_DRIVER_ENABLE
|
|
|| (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RS485 &&
|
|
IS_UART_DRIVER_ENABLE_INSTANCE(usart))
|
|
#endif
|
|
)) {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
LL_USART_Disable(usart);
|
|
|
|
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */
|
|
uart_stm32_parameters_set(dev, cfg);
|
|
|
|
LL_USART_Enable(usart);
|
|
|
|
/* Upon successful configuration, persist the syscall-passed
|
|
* uart_config.
|
|
* This allows restoring it, should the device return from a low-power
|
|
* mode in which register contents are lost.
|
|
*/
|
|
*uart_cfg = *cfg;
|
|
|
|
return 0;
|
|
};
|
|
|
|
static int uart_stm32_config_get(const struct device *dev,
|
|
struct uart_config *cfg)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
struct uart_config *uart_cfg = data->uart_cfg;
|
|
|
|
cfg->baudrate = uart_cfg->baudrate;
|
|
cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev));
|
|
cfg->stop_bits = uart_stm32_ll2cfg_stopbits(
|
|
uart_stm32_get_stopbits(dev));
|
|
cfg->data_bits = uart_stm32_ll2cfg_databits(
|
|
uart_stm32_get_databits(dev), uart_stm32_get_parity(dev));
|
|
cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl(
|
|
uart_stm32_get_hwctrl(dev));
|
|
#if HAS_DRIVER_ENABLE
|
|
if (uart_stm32_get_driver_enable(dev)) {
|
|
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RS485;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
|
|
typedef void (*poll_in_fn)(
|
|
USART_TypeDef *usart,
|
|
void *in);
|
|
|
|
static int uart_stm32_poll_in_visitor(const struct device *dev, void *in, poll_in_fn get_fn)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
|
|
/* Clear overrun error flag */
|
|
if (LL_USART_IsActiveFlag_ORE(usart)) {
|
|
LL_USART_ClearFlag_ORE(usart);
|
|
}
|
|
|
|
/*
|
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
|
|
* the uart_err_check function call (on errors flags clearing)
|
|
*/
|
|
if (!LL_USART_IsActiveFlag_RXNE(usart)) {
|
|
return -1;
|
|
}
|
|
|
|
get_fn(usart, in);
|
|
|
|
return 0;
|
|
}
|
|
|
|
typedef void (*poll_out_fn)(
|
|
USART_TypeDef *usart, void *out);
|
|
|
|
static void uart_stm32_poll_out_visitor(const struct device *dev, void *out, poll_out_fn set_fn)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
#endif
|
|
unsigned int key;
|
|
|
|
/* Wait for TXE flag to be raised
|
|
* When TXE flag is raised, we lock interrupts to prevent interrupts (notably that of usart)
|
|
* or thread switch. Then, we can safely send our character. The character sent will be
|
|
* interlaced with the characters potentially send with interrupt transmission API
|
|
*/
|
|
while (1) {
|
|
if (LL_USART_IsActiveFlag_TXE(usart)) {
|
|
key = irq_lock();
|
|
if (LL_USART_IsActiveFlag_TXE(usart)) {
|
|
break;
|
|
}
|
|
irq_unlock(key);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* If an interrupt transmission is in progress, the pm constraint is already managed by the
|
|
* call of uart_stm32_irq_tx_[en|dis]able
|
|
*/
|
|
if (!data->tx_poll_stream_on && !data->tx_int_stream_on) {
|
|
data->tx_poll_stream_on = true;
|
|
|
|
/* Don't allow system to suspend until stream
|
|
* transmission has completed
|
|
*/
|
|
uart_stm32_pm_policy_state_lock_get(dev);
|
|
|
|
/* Enable TC interrupt so we can release suspend
|
|
* constraint when done
|
|
*/
|
|
LL_USART_EnableIT_TC(usart);
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
set_fn(usart, out);
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static void poll_in_u8(USART_TypeDef *usart, void *in)
|
|
{
|
|
*((unsigned char *)in) = (unsigned char)LL_USART_ReceiveData8(usart);
|
|
}
|
|
|
|
static void poll_out_u8(USART_TypeDef *usart, void *out)
|
|
{
|
|
LL_USART_TransmitData8(usart, *((uint8_t *)out));
|
|
}
|
|
|
|
static int uart_stm32_poll_in(const struct device *dev, unsigned char *c)
|
|
{
|
|
return uart_stm32_poll_in_visitor(dev, (void *)c, poll_in_u8);
|
|
}
|
|
|
|
static void uart_stm32_poll_out(const struct device *dev, unsigned char c)
|
|
{
|
|
uart_stm32_poll_out_visitor(dev, (void *)&c, poll_out_u8);
|
|
}
|
|
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
|
|
static void poll_out_u9(USART_TypeDef *usart, void *out)
|
|
{
|
|
LL_USART_TransmitData9(usart, *((uint16_t *)out));
|
|
}
|
|
|
|
static void poll_in_u9(USART_TypeDef *usart, void *in)
|
|
{
|
|
*((uint16_t *)in) = LL_USART_ReceiveData9(usart);
|
|
}
|
|
|
|
static int uart_stm32_poll_in_u16(const struct device *dev, uint16_t *in_u16)
|
|
{
|
|
return uart_stm32_poll_in_visitor(dev, (void *)in_u16, poll_in_u9);
|
|
}
|
|
|
|
static void uart_stm32_poll_out_u16(const struct device *dev, uint16_t out_u16)
|
|
{
|
|
uart_stm32_poll_out_visitor(dev, (void *)&out_u16, poll_out_u9);
|
|
}
|
|
|
|
#endif
|
|
|
|
static int uart_stm32_err_check(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
uint32_t err = 0U;
|
|
|
|
/* Check for errors, then clear them.
|
|
* Some SoC clear all error flags when at least
|
|
* one is cleared. (e.g. F4X, F1X, and F2X).
|
|
* The stm32 F4X, F1X, and F2X also reads the usart DR when clearing Errors
|
|
*/
|
|
if (LL_USART_IsActiveFlag_ORE(usart)) {
|
|
err |= UART_ERROR_OVERRUN;
|
|
}
|
|
|
|
if (LL_USART_IsActiveFlag_PE(usart)) {
|
|
err |= UART_ERROR_PARITY;
|
|
}
|
|
|
|
if (LL_USART_IsActiveFlag_FE(usart)) {
|
|
err |= UART_ERROR_FRAMING;
|
|
}
|
|
|
|
if (LL_USART_IsActiveFlag_NE(usart)) {
|
|
err |= UART_ERROR_NOISE;
|
|
}
|
|
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
|
|
if (LL_USART_IsActiveFlag_LBD(usart)) {
|
|
err |= UART_BREAK;
|
|
}
|
|
|
|
if (err & UART_BREAK) {
|
|
LL_USART_ClearFlag_LBD(usart);
|
|
}
|
|
#endif
|
|
/* Clearing error :
|
|
* the stm32 F4X, F1X, and F2X sw sequence is reading the usart SR
|
|
* then the usart DR to clear the Error flags ORE, PE, FE, NE
|
|
* --> so is the RXNE flag also cleared !
|
|
*/
|
|
if (err & UART_ERROR_OVERRUN) {
|
|
LL_USART_ClearFlag_ORE(usart);
|
|
}
|
|
|
|
if (err & UART_ERROR_PARITY) {
|
|
LL_USART_ClearFlag_PE(usart);
|
|
}
|
|
|
|
if (err & UART_ERROR_FRAMING) {
|
|
LL_USART_ClearFlag_FE(usart);
|
|
}
|
|
|
|
if (err & UART_ERROR_NOISE) {
|
|
LL_USART_ClearFlag_NE(usart);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void __uart_stm32_get_clock(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
|
|
|
|
data->clock = clk;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
|
|
typedef void (*fifo_fill_fn)(USART_TypeDef *usart, const void *tx_data,
|
|
const uint8_t offset);
|
|
|
|
static int uart_stm32_fifo_fill_visitor(const struct device *dev, const void *tx_data, int size,
|
|
fifo_fill_fn fill_fn)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
uint8_t num_tx = 0U;
|
|
unsigned int key;
|
|
|
|
if (!LL_USART_IsActiveFlag_TXE(usart)) {
|
|
return num_tx;
|
|
}
|
|
|
|
/* Lock interrupts to prevent nested interrupts or thread switch */
|
|
key = irq_lock();
|
|
|
|
while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(usart)) {
|
|
/* TXE flag will be cleared with byte write to DR|RDR register */
|
|
|
|
/* Send a character */
|
|
fill_fn(usart, tx_data, num_tx);
|
|
num_tx++;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return num_tx;
|
|
}
|
|
|
|
static void fifo_fill_with_u8(USART_TypeDef *usart,
|
|
const void *tx_data, const uint8_t offset)
|
|
{
|
|
const uint8_t *data = (const uint8_t *)tx_data;
|
|
/* Send a character (8bit) */
|
|
LL_USART_TransmitData8(usart, data[offset]);
|
|
}
|
|
|
|
static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
|
|
{
|
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) ==
|
|
UART_CFG_DATA_BITS_9) {
|
|
return -ENOTSUP;
|
|
}
|
|
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size,
|
|
fifo_fill_with_u8);
|
|
}
|
|
|
|
typedef void (*fifo_read_fn)(USART_TypeDef *usart, void *rx_data,
|
|
const uint8_t offset);
|
|
|
|
static int uart_stm32_fifo_read_visitor(const struct device *dev, void *rx_data, const int size,
|
|
fifo_read_fn read_fn)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
uint8_t num_rx = 0U;
|
|
|
|
while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(usart)) {
|
|
/* RXNE flag will be cleared upon read from DR|RDR register */
|
|
|
|
read_fn(usart, rx_data, num_rx);
|
|
num_rx++;
|
|
|
|
/* Clear overrun error flag */
|
|
if (LL_USART_IsActiveFlag_ORE(usart)) {
|
|
LL_USART_ClearFlag_ORE(usart);
|
|
/*
|
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
|
|
* the uart_err_check function call (on errors flags clearing)
|
|
*/
|
|
}
|
|
}
|
|
|
|
return num_rx;
|
|
}
|
|
|
|
static void fifo_read_with_u8(USART_TypeDef *usart, void *rx_data,
|
|
const uint8_t offset)
|
|
{
|
|
uint8_t *data = (uint8_t *)rx_data;
|
|
|
|
data[offset] = LL_USART_ReceiveData8(usart);
|
|
}
|
|
|
|
static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
|
|
{
|
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) ==
|
|
UART_CFG_DATA_BITS_9) {
|
|
return -ENOTSUP;
|
|
}
|
|
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size,
|
|
fifo_read_with_u8);
|
|
}
|
|
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
|
|
static void fifo_fill_with_u16(USART_TypeDef *usart,
|
|
const void *tx_data, const uint8_t offset)
|
|
{
|
|
const uint16_t *data = (const uint16_t *)tx_data;
|
|
|
|
/* Send a character (9bit) */
|
|
LL_USART_TransmitData9(usart, data[offset]);
|
|
}
|
|
|
|
static int uart_stm32_fifo_fill_u16(const struct device *dev, const uint16_t *tx_data, int size)
|
|
{
|
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) !=
|
|
UART_CFG_DATA_BITS_9) {
|
|
return -ENOTSUP;
|
|
}
|
|
return uart_stm32_fifo_fill_visitor(dev, (const void *)tx_data, size,
|
|
fifo_fill_with_u16);
|
|
}
|
|
|
|
static void fifo_read_with_u16(USART_TypeDef *usart, void *rx_data,
|
|
const uint8_t offset)
|
|
{
|
|
uint16_t *data = (uint16_t *)rx_data;
|
|
|
|
data[offset] = LL_USART_ReceiveData9(usart);
|
|
}
|
|
|
|
static int uart_stm32_fifo_read_u16(const struct device *dev, uint16_t *rx_data, const int size)
|
|
{
|
|
if (uart_stm32_ll2cfg_databits(uart_stm32_get_databits(dev), uart_stm32_get_parity(dev)) !=
|
|
UART_CFG_DATA_BITS_9) {
|
|
return -ENOTSUP;
|
|
}
|
|
return uart_stm32_fifo_read_visitor(dev, (void *)rx_data, size,
|
|
fifo_read_with_u16);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void uart_stm32_irq_tx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
unsigned int key;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
key = irq_lock();
|
|
data->tx_poll_stream_on = false;
|
|
data->tx_int_stream_on = true;
|
|
uart_stm32_pm_policy_state_lock_get(dev);
|
|
#endif
|
|
LL_USART_EnableIT_TC(config->usart);
|
|
|
|
#ifdef CONFIG_PM
|
|
irq_unlock(key);
|
|
#endif
|
|
}
|
|
|
|
static void uart_stm32_irq_tx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
#ifdef CONFIG_PM
|
|
struct uart_stm32_data *data = dev->data;
|
|
unsigned int key;
|
|
|
|
key = irq_lock();
|
|
#endif
|
|
|
|
LL_USART_DisableIT_TC(config->usart);
|
|
|
|
#ifdef CONFIG_PM
|
|
data->tx_int_stream_on = false;
|
|
uart_stm32_pm_policy_state_lock_put(dev);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
irq_unlock(key);
|
|
#endif
|
|
}
|
|
|
|
static int uart_stm32_irq_tx_ready(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_IsActiveFlag_TXE(config->usart) &&
|
|
LL_USART_IsEnabledIT_TC(config->usart);
|
|
}
|
|
|
|
static int uart_stm32_irq_tx_complete(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
return LL_USART_IsActiveFlag_TC(config->usart);
|
|
}
|
|
|
|
static void uart_stm32_irq_rx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_EnableIT_RXNE(config->usart);
|
|
}
|
|
|
|
static void uart_stm32_irq_rx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_DisableIT_RXNE(config->usart);
|
|
}
|
|
|
|
static int uart_stm32_irq_rx_ready(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
/*
|
|
* On stm32 F4X, F1X, and F2X, the RXNE flag is affected (cleared) by
|
|
* the uart_err_check function call (on errors flags clearing)
|
|
*/
|
|
return LL_USART_IsActiveFlag_RXNE(config->usart);
|
|
}
|
|
|
|
static void uart_stm32_irq_err_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
|
|
/* Enable FE, ORE interruptions */
|
|
LL_USART_EnableIT_ERROR(usart);
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
|
|
/* Enable Line break detection */
|
|
if (IS_UART_LIN_INSTANCE(usart)) {
|
|
LL_USART_EnableIT_LBD(usart);
|
|
}
|
|
#endif
|
|
/* Enable parity error interruption */
|
|
LL_USART_EnableIT_PE(usart);
|
|
}
|
|
|
|
static void uart_stm32_irq_err_disable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
|
|
/* Disable FE, ORE interruptions */
|
|
LL_USART_DisableIT_ERROR(usart);
|
|
#if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT)
|
|
/* Disable Line break detection */
|
|
if (IS_UART_LIN_INSTANCE(usart)) {
|
|
LL_USART_DisableIT_LBD(usart);
|
|
}
|
|
#endif
|
|
/* Disable parity error interruption */
|
|
LL_USART_DisableIT_PE(usart);
|
|
}
|
|
|
|
static int uart_stm32_irq_is_pending(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
|
|
return ((LL_USART_IsActiveFlag_RXNE(usart) &&
|
|
LL_USART_IsEnabledIT_RXNE(usart)) ||
|
|
(LL_USART_IsActiveFlag_TC(usart) &&
|
|
LL_USART_IsEnabledIT_TC(usart)));
|
|
}
|
|
|
|
static int uart_stm32_irq_update(const struct device *dev)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void uart_stm32_irq_callback_set(const struct device *dev,
|
|
uart_irq_callback_user_data_t cb,
|
|
void *cb_data)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->user_cb = cb;
|
|
data->user_data = cb_data;
|
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
|
|
data->async_cb = NULL;
|
|
data->async_user_data = NULL;
|
|
#endif
|
|
}
|
|
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
static inline void async_user_callback(struct uart_stm32_data *data,
|
|
struct uart_event *event)
|
|
{
|
|
if (data->async_cb) {
|
|
data->async_cb(data->uart_dev, event, data->async_user_data);
|
|
}
|
|
}
|
|
|
|
static inline void async_evt_rx_rdy(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("rx_rdy: (%d %d)", data->dma_rx.offset, data->dma_rx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_RX_RDY,
|
|
.data.rx.buf = data->dma_rx.buffer,
|
|
.data.rx.len = data->dma_rx.counter - data->dma_rx.offset,
|
|
.data.rx.offset = data->dma_rx.offset
|
|
};
|
|
|
|
/* update the current pos for new data */
|
|
data->dma_rx.offset = data->dma_rx.counter;
|
|
|
|
/* send event only for new data */
|
|
if (event.data.rx.len > 0) {
|
|
async_user_callback(data, &event);
|
|
}
|
|
}
|
|
|
|
static inline void async_evt_rx_err(struct uart_stm32_data *data, int err_code)
|
|
{
|
|
LOG_DBG("rx error: %d", err_code);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_RX_STOPPED,
|
|
.data.rx_stop.reason = err_code,
|
|
.data.rx_stop.data.len = data->dma_rx.counter,
|
|
.data.rx_stop.data.offset = 0,
|
|
.data.rx_stop.data.buf = data->dma_rx.buffer
|
|
};
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_tx_done(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("tx done: %d", data->dma_tx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_TX_DONE,
|
|
.data.tx.buf = data->dma_tx.buffer,
|
|
.data.tx.len = data->dma_tx.counter
|
|
};
|
|
|
|
/* Reset tx buffer */
|
|
data->dma_tx.buffer_length = 0;
|
|
data->dma_tx.counter = 0;
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_tx_abort(struct uart_stm32_data *data)
|
|
{
|
|
LOG_DBG("tx abort: %d", data->dma_tx.counter);
|
|
|
|
struct uart_event event = {
|
|
.type = UART_TX_ABORTED,
|
|
.data.tx.buf = data->dma_tx.buffer,
|
|
.data.tx.len = data->dma_tx.counter
|
|
};
|
|
|
|
/* Reset tx buffer */
|
|
data->dma_tx.buffer_length = 0;
|
|
data->dma_tx.counter = 0;
|
|
|
|
async_user_callback(data, &event);
|
|
}
|
|
|
|
static inline void async_evt_rx_buf_request(struct uart_stm32_data *data)
|
|
{
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_REQUEST,
|
|
};
|
|
|
|
async_user_callback(data, &evt);
|
|
}
|
|
|
|
static inline void async_evt_rx_buf_release(struct uart_stm32_data *data)
|
|
{
|
|
struct uart_event evt = {
|
|
.type = UART_RX_BUF_RELEASED,
|
|
.data.rx_buf.buf = data->dma_rx.buffer,
|
|
};
|
|
|
|
async_user_callback(data, &evt);
|
|
}
|
|
|
|
static inline void async_timer_start(struct k_work_delayable *work,
|
|
int32_t timeout)
|
|
{
|
|
if ((timeout != SYS_FOREVER_US) && (timeout != 0)) {
|
|
/* start timer */
|
|
LOG_DBG("async timer started for %d us", timeout);
|
|
k_work_reschedule(work, K_USEC(timeout));
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_dma_rx_flush(const struct device *dev)
|
|
{
|
|
struct dma_status stat;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
if (dma_get_status(data->dma_rx.dma_dev,
|
|
data->dma_rx.dma_channel, &stat) == 0) {
|
|
size_t rx_rcv_len = data->dma_rx.buffer_length -
|
|
stat.pending_length;
|
|
if (rx_rcv_len > data->dma_rx.offset) {
|
|
data->dma_rx.counter = rx_rcv_len;
|
|
|
|
async_evt_rx_rdy(data);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || \
|
|
defined(CONFIG_UART_ASYNC_API) || \
|
|
defined(CONFIG_PM)
|
|
|
|
static void uart_stm32_isr(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
#if defined(CONFIG_PM) || defined(CONFIG_UART_ASYNC_API)
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
if (LL_USART_IsEnabledIT_TC(usart) &&
|
|
LL_USART_IsActiveFlag_TC(usart)) {
|
|
|
|
if (data->tx_poll_stream_on) {
|
|
/* A poll stream transmission just completed,
|
|
* allow system to suspend
|
|
*/
|
|
LL_USART_DisableIT_TC(usart);
|
|
data->tx_poll_stream_on = false;
|
|
uart_stm32_pm_policy_state_lock_put(dev);
|
|
}
|
|
/* Stream transmission was either async or IRQ based,
|
|
* constraint will be released at the same time TC IT
|
|
* is disabled
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
if (data->user_cb) {
|
|
data->user_cb(dev, data->user_data);
|
|
}
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
if (LL_USART_IsEnabledIT_IDLE(usart) &&
|
|
LL_USART_IsActiveFlag_IDLE(usart)) {
|
|
|
|
LL_USART_ClearFlag_IDLE(usart);
|
|
|
|
LOG_DBG("idle interrupt occurred");
|
|
|
|
if (data->dma_rx.timeout == 0) {
|
|
uart_stm32_dma_rx_flush(dev);
|
|
} else {
|
|
/* Start the RX timer not null */
|
|
async_timer_start(&data->dma_rx.timeout_work,
|
|
data->dma_rx.timeout);
|
|
}
|
|
} else if (LL_USART_IsEnabledIT_TC(usart) &&
|
|
LL_USART_IsActiveFlag_TC(usart)) {
|
|
|
|
LL_USART_DisableIT_TC(usart);
|
|
/* Generate TX_DONE event when transmission is done */
|
|
async_evt_tx_done(data);
|
|
|
|
#ifdef CONFIG_PM
|
|
uart_stm32_pm_policy_state_lock_put(dev);
|
|
#endif
|
|
} else if (LL_USART_IsEnabledIT_RXNE(usart) &&
|
|
LL_USART_IsActiveFlag_RXNE(usart)) {
|
|
#ifdef USART_SR_RXNE
|
|
/* clear the RXNE flag, because Rx data was not read */
|
|
LL_USART_ClearFlag_RXNE(usart);
|
|
#else
|
|
/* clear the RXNE by flushing the fifo, because Rx data was not read */
|
|
LL_USART_RequestRxDataFlush(usart);
|
|
#endif /* USART_SR_RXNE */
|
|
}
|
|
|
|
/* Clear errors */
|
|
uart_stm32_err_check(dev);
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE) \
|
|
&& defined(USART_CR3_WUFIE)
|
|
if (LL_USART_IsEnabledIT_WKUP(usart) &&
|
|
LL_USART_IsActiveFlag_WKUP(usart)) {
|
|
|
|
LL_USART_ClearFlag_WKUP(usart);
|
|
#ifdef USART_ISR_REACK
|
|
while (LL_USART_IsActiveFlag_REACK(usart) == 0) {
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API || CONFIG_PM */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
#ifdef CONFIG_DCACHE
|
|
static bool buf_in_nocache(uintptr_t buf, size_t len_bytes)
|
|
{
|
|
bool buf_within_nocache = false;
|
|
|
|
#ifdef CONFIG_NOCACHE_MEMORY
|
|
buf_within_nocache = (buf >= ((uintptr_t)_nocache_ram_start)) &&
|
|
((buf + len_bytes - 1) <= ((uintptr_t)_nocache_ram_end));
|
|
if (buf_within_nocache) {
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_NOCACHE_MEMORY */
|
|
|
|
buf_within_nocache = mem_attr_check_buf(
|
|
(void *)buf, len_bytes, DT_MEM_ARM_MPU_RAM_NOCACHE) == 0;
|
|
if (buf_within_nocache) {
|
|
return true;
|
|
}
|
|
|
|
buf_within_nocache = (buf >= ((uintptr_t)__rodata_region_start)) &&
|
|
((buf + len_bytes - 1) <= ((uintptr_t)__rodata_region_end));
|
|
|
|
return buf_within_nocache;
|
|
}
|
|
#endif /* CONFIG_DCACHE */
|
|
|
|
static int uart_stm32_async_callback_set(const struct device *dev,
|
|
uart_callback_t callback,
|
|
void *user_data)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->async_cb = callback;
|
|
data->async_user_data = user_data;
|
|
|
|
#if defined(CONFIG_UART_EXCLUSIVE_API_CALLBACKS)
|
|
data->user_cb = NULL;
|
|
data->user_data = NULL;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void uart_stm32_dma_tx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_EnableDMAReq_TX(config->usart);
|
|
}
|
|
|
|
static inline void uart_stm32_dma_tx_disable(const struct device *dev)
|
|
{
|
|
#ifdef CONFIG_UART_STM32U5_ERRATA_DMAT
|
|
ARG_UNUSED(dev);
|
|
|
|
/*
|
|
* Errata Sheet ES0499 : STM32U575xx and STM32U585xx device errata
|
|
* USART does not generate DMA requests after setting/clearing DMAT bit
|
|
* (also seen on stm32H5 serie)
|
|
*/
|
|
#else
|
|
const struct uart_stm32_config *config = dev->config;
|
|
|
|
LL_USART_DisableDMAReq_TX(config->usart);
|
|
#endif
|
|
}
|
|
|
|
static inline void uart_stm32_dma_rx_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
LL_USART_EnableDMAReq_RX(config->usart);
|
|
|
|
data->dma_rx.enabled = true;
|
|
}
|
|
|
|
static inline void uart_stm32_dma_rx_disable(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->dma_rx.enabled = false;
|
|
}
|
|
|
|
static int uart_stm32_async_rx_disable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
struct uart_event disabled_event = {
|
|
.type = UART_RX_DISABLED
|
|
};
|
|
|
|
if (!data->dma_rx.enabled) {
|
|
async_user_callback(data, &disabled_event);
|
|
return -EFAULT;
|
|
}
|
|
|
|
LL_USART_DisableIT_IDLE(usart);
|
|
|
|
uart_stm32_dma_rx_flush(dev);
|
|
|
|
async_evt_rx_buf_release(data);
|
|
|
|
uart_stm32_dma_rx_disable(dev);
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
|
|
|
|
dma_stop(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
|
|
|
|
if (data->rx_next_buffer) {
|
|
struct uart_event rx_next_buf_release_evt = {
|
|
.type = UART_RX_BUF_RELEASED,
|
|
.data.rx_buf.buf = data->rx_next_buffer,
|
|
};
|
|
async_user_callback(data, &rx_next_buf_release_evt);
|
|
}
|
|
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
/* When async rx is disabled, enable interruptible instance of uart to function normally */
|
|
LL_USART_EnableIT_RXNE(usart);
|
|
|
|
LOG_DBG("rx: disabled");
|
|
|
|
async_user_callback(data, &disabled_event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void uart_stm32_dma_tx_cb(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
struct uart_stm32_data *data = uart_dev->data;
|
|
struct dma_status stat;
|
|
unsigned int key = irq_lock();
|
|
|
|
/* Disable TX */
|
|
uart_stm32_dma_tx_disable(uart_dev);
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
|
|
|
|
if (!dma_get_status(data->dma_tx.dma_dev,
|
|
data->dma_tx.dma_channel, &stat)) {
|
|
data->dma_tx.counter = data->dma_tx.buffer_length -
|
|
stat.pending_length;
|
|
}
|
|
|
|
data->dma_tx.buffer_length = 0;
|
|
|
|
irq_unlock(key);
|
|
}
|
|
|
|
static void uart_stm32_dma_replace_buffer(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
/* Replace the buffer and reload the DMA */
|
|
LOG_DBG("Replacing RX buffer: %d", data->rx_next_buffer_len);
|
|
|
|
/* reload DMA */
|
|
data->dma_rx.offset = 0;
|
|
data->dma_rx.counter = 0;
|
|
data->dma_rx.buffer = data->rx_next_buffer;
|
|
data->dma_rx.buffer_length = data->rx_next_buffer_len;
|
|
data->dma_rx.blk_cfg.block_size = data->dma_rx.buffer_length;
|
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
dma_reload(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
|
|
data->dma_rx.blk_cfg.source_address,
|
|
data->dma_rx.blk_cfg.dest_address,
|
|
data->dma_rx.blk_cfg.block_size);
|
|
|
|
dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel);
|
|
|
|
LL_USART_ClearFlag_IDLE(usart);
|
|
|
|
/* Request next buffer */
|
|
async_evt_rx_buf_request(data);
|
|
}
|
|
|
|
void uart_stm32_dma_rx_cb(const struct device *dma_dev, void *user_data,
|
|
uint32_t channel, int status)
|
|
{
|
|
const struct device *uart_dev = user_data;
|
|
struct uart_stm32_data *data = uart_dev->data;
|
|
|
|
if (status < 0) {
|
|
async_evt_rx_err(data, status);
|
|
return;
|
|
}
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_rx.timeout_work);
|
|
|
|
/* true since this functions occurs when buffer if full */
|
|
data->dma_rx.counter = data->dma_rx.buffer_length;
|
|
|
|
async_evt_rx_rdy(data);
|
|
|
|
if (data->rx_next_buffer != NULL) {
|
|
async_evt_rx_buf_release(data);
|
|
|
|
/* replace the buffer when the current
|
|
* is full and not the same as the next
|
|
* one.
|
|
*/
|
|
uart_stm32_dma_replace_buffer(uart_dev);
|
|
} else {
|
|
/* Buffer full without valid next buffer,
|
|
* an UART_RX_DISABLED event must be generated,
|
|
* but uart_stm32_async_rx_disable() cannot be
|
|
* called in ISR context. So force the RX timeout
|
|
* to minimum value and let the RX timeout to do the job.
|
|
*/
|
|
k_work_reschedule(&data->dma_rx.timeout_work, K_TICKS(1));
|
|
}
|
|
}
|
|
|
|
static int uart_stm32_async_tx(const struct device *dev,
|
|
const uint8_t *tx_data, size_t buf_size, int32_t timeout)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
int ret;
|
|
|
|
if (data->dma_tx.dma_dev == NULL) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (data->dma_tx.buffer_length != 0) {
|
|
return -EBUSY;
|
|
}
|
|
|
|
#ifdef CONFIG_DCACHE
|
|
if (!buf_in_nocache((uintptr_t)tx_data, buf_size)) {
|
|
LOG_ERR("Tx buffer should be placed in a nocache memory region");
|
|
return -EFAULT;
|
|
}
|
|
#endif /* CONFIG_DCACHE */
|
|
|
|
data->dma_tx.buffer = (uint8_t *)tx_data;
|
|
data->dma_tx.buffer_length = buf_size;
|
|
data->dma_tx.timeout = timeout;
|
|
|
|
LOG_DBG("tx: l=%d", data->dma_tx.buffer_length);
|
|
|
|
/* Clear TC flag */
|
|
LL_USART_ClearFlag_TC(usart);
|
|
|
|
/* Enable TC interrupt so we can signal correct TX done */
|
|
LL_USART_EnableIT_TC(usart);
|
|
|
|
/* set source address */
|
|
data->dma_tx.blk_cfg.source_address = (uint32_t)data->dma_tx.buffer;
|
|
data->dma_tx.blk_cfg.block_size = data->dma_tx.buffer_length;
|
|
|
|
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.dma_channel,
|
|
&data->dma_tx.dma_cfg);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("dma tx config error!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dma_start(data->dma_tx.dma_dev, data->dma_tx.dma_channel)) {
|
|
LOG_ERR("UART err: TX DMA start failed!");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Start TX timer */
|
|
async_timer_start(&data->dma_tx.timeout_work, data->dma_tx.timeout);
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
/* Do not allow system to suspend until transmission has completed */
|
|
uart_stm32_pm_policy_state_lock_get(dev);
|
|
#endif
|
|
|
|
/* Enable TX DMA requests */
|
|
uart_stm32_dma_tx_enable(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_stm32_async_rx_enable(const struct device *dev,
|
|
uint8_t *rx_buf, size_t buf_size, int32_t timeout)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
int ret;
|
|
|
|
if (data->dma_rx.dma_dev == NULL) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (data->dma_rx.enabled) {
|
|
LOG_WRN("RX was already enabled");
|
|
return -EBUSY;
|
|
}
|
|
|
|
#ifdef CONFIG_DCACHE
|
|
if (!buf_in_nocache((uintptr_t)rx_buf, buf_size)) {
|
|
LOG_ERR("Rx buffer should be placed in a nocache memory region");
|
|
return -EFAULT;
|
|
}
|
|
#endif /* CONFIG_DCACHE */
|
|
|
|
data->dma_rx.offset = 0;
|
|
data->dma_rx.buffer = rx_buf;
|
|
data->dma_rx.buffer_length = buf_size;
|
|
data->dma_rx.counter = 0;
|
|
data->dma_rx.timeout = timeout;
|
|
|
|
/* Disable RX interrupts to let DMA to handle it */
|
|
LL_USART_DisableIT_RXNE(usart);
|
|
|
|
data->dma_rx.blk_cfg.block_size = buf_size;
|
|
data->dma_rx.blk_cfg.dest_address = (uint32_t)data->dma_rx.buffer;
|
|
|
|
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.dma_channel,
|
|
&data->dma_rx.dma_cfg);
|
|
|
|
if (ret != 0) {
|
|
LOG_ERR("UART ERR: RX DMA config failed!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dma_start(data->dma_rx.dma_dev, data->dma_rx.dma_channel)) {
|
|
LOG_ERR("UART ERR: RX DMA start failed!");
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Flush RX data buffer */
|
|
#ifdef USART_SR_RXNE
|
|
LL_USART_ClearFlag_RXNE(usart);
|
|
#else
|
|
LL_USART_RequestRxDataFlush(usart);
|
|
#endif /* USART_SR_RXNE */
|
|
|
|
/* Enable RX DMA requests */
|
|
uart_stm32_dma_rx_enable(dev);
|
|
|
|
/* Enable IRQ IDLE to define the end of a
|
|
* RX DMA transaction.
|
|
*/
|
|
LL_USART_ClearFlag_IDLE(usart);
|
|
LL_USART_EnableIT_IDLE(usart);
|
|
|
|
LL_USART_EnableIT_ERROR(usart);
|
|
|
|
/* Request next buffer */
|
|
async_evt_rx_buf_request(data);
|
|
|
|
LOG_DBG("async rx enabled");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int uart_stm32_async_tx_abort(const struct device *dev)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
size_t tx_buffer_length = data->dma_tx.buffer_length;
|
|
struct dma_status stat;
|
|
|
|
if (tx_buffer_length == 0) {
|
|
return -EFAULT;
|
|
}
|
|
|
|
(void)k_work_cancel_delayable(&data->dma_tx.timeout_work);
|
|
if (!dma_get_status(data->dma_tx.dma_dev,
|
|
data->dma_tx.dma_channel, &stat)) {
|
|
data->dma_tx.counter = tx_buffer_length - stat.pending_length;
|
|
}
|
|
|
|
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32u5_dma)
|
|
dma_suspend(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
|
|
#endif
|
|
dma_stop(data->dma_tx.dma_dev, data->dma_tx.dma_channel);
|
|
async_evt_tx_abort(data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void uart_stm32_async_rx_timeout(struct k_work *work)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
|
|
struct uart_dma_stream *rx_stream = CONTAINER_OF(dwork,
|
|
struct uart_dma_stream, timeout_work);
|
|
struct uart_stm32_data *data = CONTAINER_OF(rx_stream,
|
|
struct uart_stm32_data, dma_rx);
|
|
const struct device *dev = data->uart_dev;
|
|
|
|
LOG_DBG("rx timeout");
|
|
|
|
if (data->dma_rx.counter == data->dma_rx.buffer_length) {
|
|
uart_stm32_async_rx_disable(dev);
|
|
} else {
|
|
uart_stm32_dma_rx_flush(dev);
|
|
}
|
|
}
|
|
|
|
static void uart_stm32_async_tx_timeout(struct k_work *work)
|
|
{
|
|
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
|
|
struct uart_dma_stream *tx_stream = CONTAINER_OF(dwork,
|
|
struct uart_dma_stream, timeout_work);
|
|
struct uart_stm32_data *data = CONTAINER_OF(tx_stream,
|
|
struct uart_stm32_data, dma_tx);
|
|
const struct device *dev = data->uart_dev;
|
|
|
|
uart_stm32_async_tx_abort(dev);
|
|
|
|
LOG_DBG("tx: async timeout");
|
|
}
|
|
|
|
static int uart_stm32_async_rx_buf_rsp(const struct device *dev, uint8_t *buf,
|
|
size_t len)
|
|
{
|
|
struct uart_stm32_data *data = dev->data;
|
|
unsigned int key;
|
|
int err = 0;
|
|
|
|
LOG_DBG("replace buffer (%d)", len);
|
|
|
|
key = irq_lock();
|
|
|
|
if (data->rx_next_buffer != NULL) {
|
|
err = -EBUSY;
|
|
} else if (!data->dma_rx.enabled) {
|
|
err = -EACCES;
|
|
} else {
|
|
#ifdef CONFIG_DCACHE
|
|
if (!buf_in_nocache((uintptr_t)buf, len)) {
|
|
LOG_ERR("Rx buffer should be placed in a nocache memory region");
|
|
return -EFAULT;
|
|
}
|
|
#endif /* CONFIG_DCACHE */
|
|
data->rx_next_buffer = buf;
|
|
data->rx_next_buffer_len = len;
|
|
}
|
|
|
|
irq_unlock(key);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int uart_stm32_async_init(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
|
|
data->uart_dev = dev;
|
|
|
|
if (data->dma_rx.dma_dev != NULL) {
|
|
if (!device_is_ready(data->dma_rx.dma_dev)) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
if (data->dma_tx.dma_dev != NULL) {
|
|
if (!device_is_ready(data->dma_tx.dma_dev)) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
/* Disable both TX and RX DMA requests */
|
|
uart_stm32_dma_rx_disable(dev);
|
|
uart_stm32_dma_tx_disable(dev);
|
|
|
|
k_work_init_delayable(&data->dma_rx.timeout_work,
|
|
uart_stm32_async_rx_timeout);
|
|
k_work_init_delayable(&data->dma_tx.timeout_work,
|
|
uart_stm32_async_tx_timeout);
|
|
|
|
/* Configure dma rx config */
|
|
memset(&data->dma_rx.blk_cfg, 0, sizeof(data->dma_rx.blk_cfg));
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L1X)
|
|
data->dma_rx.blk_cfg.source_address =
|
|
LL_USART_DMA_GetRegAddr(usart);
|
|
#else
|
|
data->dma_rx.blk_cfg.source_address =
|
|
LL_USART_DMA_GetRegAddr(usart,
|
|
LL_USART_DMA_REG_DATA_RECEIVE);
|
|
#endif
|
|
|
|
data->dma_rx.blk_cfg.dest_address = 0; /* dest not ready */
|
|
|
|
if (data->dma_rx.src_addr_increment) {
|
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_rx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
if (data->dma_rx.dst_addr_increment) {
|
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_rx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
/* RX disable circular buffer */
|
|
data->dma_rx.blk_cfg.source_reload_en = 0;
|
|
data->dma_rx.blk_cfg.dest_reload_en = 0;
|
|
data->dma_rx.blk_cfg.fifo_mode_control = data->dma_rx.fifo_threshold;
|
|
|
|
data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg;
|
|
data->dma_rx.dma_cfg.user_data = (void *)dev;
|
|
data->rx_next_buffer = NULL;
|
|
data->rx_next_buffer_len = 0;
|
|
|
|
/* Configure dma tx config */
|
|
memset(&data->dma_tx.blk_cfg, 0, sizeof(data->dma_tx.blk_cfg));
|
|
|
|
#if defined(CONFIG_SOC_SERIES_STM32F1X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F2X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32F4X) || \
|
|
defined(CONFIG_SOC_SERIES_STM32L1X)
|
|
data->dma_tx.blk_cfg.dest_address =
|
|
LL_USART_DMA_GetRegAddr(usart);
|
|
#else
|
|
data->dma_tx.blk_cfg.dest_address =
|
|
LL_USART_DMA_GetRegAddr(usart,
|
|
LL_USART_DMA_REG_DATA_TRANSMIT);
|
|
#endif
|
|
|
|
data->dma_tx.blk_cfg.source_address = 0; /* not ready */
|
|
|
|
if (data->dma_tx.src_addr_increment) {
|
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_tx.blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
if (data->dma_tx.dst_addr_increment) {
|
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
|
|
} else {
|
|
data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
|
|
}
|
|
|
|
data->dma_tx.blk_cfg.fifo_mode_control = data->dma_tx.fifo_threshold;
|
|
|
|
data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg;
|
|
data->dma_tx.dma_cfg.user_data = (void *)dev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
|
|
static int uart_stm32_async_tx_u16(const struct device *dev, const uint16_t *tx_data,
|
|
size_t buf_size, int32_t timeout)
|
|
{
|
|
return uart_stm32_async_tx(dev, (const uint8_t *)tx_data, buf_size * 2, timeout);
|
|
}
|
|
|
|
static int uart_stm32_async_rx_enable_u16(const struct device *dev, uint16_t *buf, size_t len,
|
|
int32_t timeout)
|
|
{
|
|
return uart_stm32_async_rx_enable(dev, (uint8_t *)buf, len * 2, timeout);
|
|
}
|
|
|
|
static int uart_stm32_async_rx_buf_rsp_u16(const struct device *dev, uint16_t *buf, size_t len)
|
|
{
|
|
return uart_stm32_async_rx_buf_rsp(dev, (uint8_t *)buf, len * 2);
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
|
|
static const struct uart_driver_api uart_stm32_driver_api = {
|
|
.poll_in = uart_stm32_poll_in,
|
|
.poll_out = uart_stm32_poll_out,
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
.poll_in_u16 = uart_stm32_poll_in_u16,
|
|
.poll_out_u16 = uart_stm32_poll_out_u16,
|
|
#endif
|
|
.err_check = uart_stm32_err_check,
|
|
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
|
|
.configure = uart_stm32_configure,
|
|
.config_get = uart_stm32_config_get,
|
|
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
|
|
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
|
|
.fifo_fill = uart_stm32_fifo_fill,
|
|
.fifo_read = uart_stm32_fifo_read,
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
.fifo_fill_u16 = uart_stm32_fifo_fill_u16,
|
|
.fifo_read_u16 = uart_stm32_fifo_read_u16,
|
|
#endif
|
|
.irq_tx_enable = uart_stm32_irq_tx_enable,
|
|
.irq_tx_disable = uart_stm32_irq_tx_disable,
|
|
.irq_tx_ready = uart_stm32_irq_tx_ready,
|
|
.irq_tx_complete = uart_stm32_irq_tx_complete,
|
|
.irq_rx_enable = uart_stm32_irq_rx_enable,
|
|
.irq_rx_disable = uart_stm32_irq_rx_disable,
|
|
.irq_rx_ready = uart_stm32_irq_rx_ready,
|
|
.irq_err_enable = uart_stm32_irq_err_enable,
|
|
.irq_err_disable = uart_stm32_irq_err_disable,
|
|
.irq_is_pending = uart_stm32_irq_is_pending,
|
|
.irq_update = uart_stm32_irq_update,
|
|
.irq_callback_set = uart_stm32_irq_callback_set,
|
|
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
.callback_set = uart_stm32_async_callback_set,
|
|
.tx = uart_stm32_async_tx,
|
|
.tx_abort = uart_stm32_async_tx_abort,
|
|
.rx_enable = uart_stm32_async_rx_enable,
|
|
.rx_disable = uart_stm32_async_rx_disable,
|
|
.rx_buf_rsp = uart_stm32_async_rx_buf_rsp,
|
|
#ifdef CONFIG_UART_WIDE_DATA
|
|
.tx_u16 = uart_stm32_async_tx_u16,
|
|
.rx_enable_u16 = uart_stm32_async_rx_enable_u16,
|
|
.rx_buf_rsp_u16 = uart_stm32_async_rx_buf_rsp_u16,
|
|
#endif
|
|
#endif /* CONFIG_UART_ASYNC_API */
|
|
};
|
|
|
|
static int uart_stm32_clocks_enable(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
int err;
|
|
|
|
__uart_stm32_get_clock(dev);
|
|
|
|
if (!device_is_ready(data->clock)) {
|
|
LOG_ERR("clock control device not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* enable clock */
|
|
err = clock_control_on(data->clock, (clock_control_subsys_t)&config->pclken[0]);
|
|
if (err != 0) {
|
|
LOG_ERR("Could not enable (LP)UART clock");
|
|
return err;
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_UART_DOMAIN_CLOCK_SUPPORT) && (config->pclk_len > 1)) {
|
|
err = clock_control_configure(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE),
|
|
(clock_control_subsys_t) &config->pclken[1],
|
|
NULL);
|
|
if (err != 0) {
|
|
LOG_ERR("Could not select UART domain clock");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_stm32_registers_configure(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
struct uart_stm32_data *data = dev->data;
|
|
struct uart_config *uart_cfg = data->uart_cfg;
|
|
|
|
LL_USART_Disable(usart);
|
|
|
|
if (!device_is_ready(config->reset.dev)) {
|
|
LOG_ERR("reset controller not ready");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Reset UART to default state using RCC */
|
|
(void)reset_line_toggle_dt(&config->reset);
|
|
|
|
/* TX/RX direction */
|
|
LL_USART_SetTransferDirection(usart, LL_USART_DIRECTION_TX_RX);
|
|
|
|
/* Set basic parameters, such as data-/stop-bit, parity, and baudrate */
|
|
uart_stm32_parameters_set(dev, uart_cfg);
|
|
|
|
/* Enable the single wire / half-duplex mode */
|
|
if (config->single_wire) {
|
|
LL_USART_EnableHalfDuplex(usart);
|
|
}
|
|
|
|
#ifdef LL_USART_TXRX_SWAPPED
|
|
if (config->tx_rx_swap) {
|
|
LL_USART_SetTXRXSwap(usart, LL_USART_TXRX_SWAPPED);
|
|
}
|
|
#endif
|
|
|
|
#ifdef LL_USART_RXPIN_LEVEL_INVERTED
|
|
if (config->rx_invert) {
|
|
LL_USART_SetRXPinLevel(usart, LL_USART_RXPIN_LEVEL_INVERTED);
|
|
}
|
|
#endif
|
|
|
|
#ifdef LL_USART_TXPIN_LEVEL_INVERTED
|
|
if (config->tx_invert) {
|
|
LL_USART_SetTXPinLevel(usart, LL_USART_TXPIN_LEVEL_INVERTED);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_DRIVER_ENABLE
|
|
if (config->de_enable) {
|
|
if (!IS_UART_DRIVER_ENABLE_INSTANCE(usart)) {
|
|
LOG_ERR("%s does not support driver enable", dev->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
uart_stm32_set_driver_enable(dev, true);
|
|
LL_USART_SetDEAssertionTime(usart, config->de_assert_time);
|
|
LL_USART_SetDEDeassertionTime(usart, config->de_deassert_time);
|
|
|
|
if (config->de_invert) {
|
|
LL_USART_SetDESignalPolarity(usart, LL_USART_DE_POLARITY_LOW);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef USART_CR1_FIFOEN
|
|
if (config->fifo_enable) {
|
|
LL_USART_EnableFIFO(usart);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PM) && defined(IS_UART_WAKEUP_FROMSTOP_INSTANCE)
|
|
if (config->wakeup_source) {
|
|
/* Enable ability to wakeup device in Stop mode
|
|
* Effect depends on CONFIG_PM_DEVICE status:
|
|
* CONFIG_PM_DEVICE=n : Always active
|
|
* CONFIG_PM_DEVICE=y : Controlled by pm_device_wakeup_enable()
|
|
*/
|
|
#ifdef USART_CR3_WUFIE
|
|
LL_USART_SetWKUPType(usart, LL_USART_WAKEUP_ON_RXNE);
|
|
LL_USART_EnableIT_WKUP(usart);
|
|
LL_USART_ClearFlag_WKUP(usart);
|
|
#endif
|
|
LL_USART_EnableInStopMode(usart);
|
|
|
|
if (config->wakeup_line != STM32_WAKEUP_LINE_NONE) {
|
|
/* Prepare the WAKEUP with the expected EXTI line */
|
|
LL_EXTI_EnableIT_0_31(BIT(config->wakeup_line));
|
|
}
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
LL_USART_Enable(usart);
|
|
|
|
#ifdef USART_ISR_TEACK
|
|
/* Wait until TEACK flag is set */
|
|
while (!(LL_USART_IsActiveFlag_TEACK(usart))) {
|
|
}
|
|
#endif /* !USART_ISR_TEACK */
|
|
|
|
#ifdef USART_ISR_REACK
|
|
/* Wait until REACK flag is set */
|
|
while (!(LL_USART_IsActiveFlag_REACK(usart))) {
|
|
}
|
|
#endif /* !USART_ISR_REACK */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief Initialize UART channel
|
|
*
|
|
* This routine is called to reset the chip in a quiescent state.
|
|
* It is assumed that this function is called only once per UART.
|
|
*
|
|
* @param dev UART device struct
|
|
*
|
|
* @return 0
|
|
*/
|
|
static int uart_stm32_init(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
int err;
|
|
|
|
err = uart_stm32_clocks_enable(dev);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
/* Configure dt provided device signals when available */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
err = uart_stm32_registers_configure(dev);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
#if defined(CONFIG_PM) || \
|
|
defined(CONFIG_UART_INTERRUPT_DRIVEN) || \
|
|
defined(CONFIG_UART_ASYNC_API)
|
|
config->irq_config_func(dev);
|
|
#endif /* CONFIG_PM || CONFIG_UART_INTERRUPT_DRIVEN || CONFIG_UART_ASYNC_API */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
return uart_stm32_async_init(dev);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_PM_DEVICE
|
|
static void uart_stm32_suspend_setup(const struct device *dev)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
USART_TypeDef *usart = config->usart;
|
|
|
|
#ifdef USART_ISR_BUSY
|
|
/* Make sure that no USART transfer is on-going */
|
|
while (LL_USART_IsActiveFlag_BUSY(usart) == 1) {
|
|
}
|
|
#endif
|
|
while (LL_USART_IsActiveFlag_TC(usart) == 0) {
|
|
}
|
|
#ifdef USART_ISR_REACK
|
|
/* Make sure that USART is ready for reception */
|
|
while (LL_USART_IsActiveFlag_REACK(usart) == 0) {
|
|
}
|
|
#endif
|
|
/* Clear OVERRUN flag */
|
|
LL_USART_ClearFlag_ORE(usart);
|
|
}
|
|
|
|
static int uart_stm32_pm_action(const struct device *dev,
|
|
enum pm_device_action action)
|
|
{
|
|
const struct uart_stm32_config *config = dev->config;
|
|
struct uart_stm32_data *data = dev->data;
|
|
int err;
|
|
|
|
|
|
switch (action) {
|
|
case PM_DEVICE_ACTION_RESUME:
|
|
/* Set pins to active state */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (err < 0) {
|
|
return err;
|
|
}
|
|
|
|
/* Enable clock */
|
|
err = clock_control_on(data->clock,
|
|
(clock_control_subsys_t)&config->pclken[0]);
|
|
if (err < 0) {
|
|
LOG_ERR("Could not enable (LP)UART clock");
|
|
return err;
|
|
}
|
|
|
|
if ((IS_ENABLED(CONFIG_PM_S2RAM)) &&
|
|
(!LL_USART_IsEnabled(config->usart))) {
|
|
/* When exiting low power mode, check whether UART is enabled.
|
|
* If not, it means we are exiting Suspend to RAM mode (STM32
|
|
* Standby), and the driver needs to be reinitialized.
|
|
*/
|
|
uart_stm32_init(dev);
|
|
}
|
|
break;
|
|
case PM_DEVICE_ACTION_SUSPEND:
|
|
uart_stm32_suspend_setup(dev);
|
|
/* Stop device clock. Note: fixed clocks are not handled yet. */
|
|
err = clock_control_off(data->clock, (clock_control_subsys_t)&config->pclken[0]);
|
|
if (err < 0) {
|
|
LOG_ERR("Could not enable (LP)UART clock");
|
|
return err;
|
|
}
|
|
|
|
/* Move pins to sleep state */
|
|
err = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP);
|
|
if ((err < 0) && (err != -ENOENT)) {
|
|
/*
|
|
* If returning -ENOENT, no pins where defined for sleep mode :
|
|
* Do not output on console (might sleep already) when going to sleep,
|
|
* "(LP)UART pinctrl sleep state not available"
|
|
* and don't block PM suspend.
|
|
* Else return the error.
|
|
*/
|
|
return err;
|
|
}
|
|
break;
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM_DEVICE */
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
|
|
/* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */
|
|
#define UART_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \
|
|
.dma_dev = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \
|
|
.dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \
|
|
.dma_cfg = { \
|
|
.dma_slot = STM32_DMA_SLOT(index, dir, slot),\
|
|
.channel_direction = STM32_DMA_CONFIG_DIRECTION( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.channel_priority = STM32_DMA_CONFIG_PRIORITY( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.source_data_size = STM32_DMA_CONFIG_##src_dev##_DATA_SIZE(\
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.dest_data_size = STM32_DMA_CONFIG_##dest_dev##_DATA_SIZE(\
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)),\
|
|
.source_burst_length = 1, /* SINGLE transfer */ \
|
|
.dest_burst_length = 1, \
|
|
.block_count = 1, \
|
|
.dma_callback = uart_stm32_dma_##dir##_cb, \
|
|
}, \
|
|
.src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \
|
|
STM32_DMA_CHANNEL_CONFIG(index, dir)), \
|
|
.fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \
|
|
STM32_DMA_FEATURES(index, dir)), \
|
|
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \
|
|
defined(CONFIG_PM)
|
|
#define STM32_UART_IRQ_HANDLER_DECL(index) \
|
|
static void uart_stm32_irq_config_func_##index(const struct device *dev);
|
|
#define STM32_UART_IRQ_HANDLER(index) \
|
|
static void uart_stm32_irq_config_func_##index(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(index), \
|
|
DT_INST_IRQ(index, priority), \
|
|
uart_stm32_isr, DEVICE_DT_INST_GET(index), \
|
|
0); \
|
|
irq_enable(DT_INST_IRQN(index)); \
|
|
}
|
|
#else
|
|
#define STM32_UART_IRQ_HANDLER_DECL(index) /* Not used */
|
|
#define STM32_UART_IRQ_HANDLER(index) /* Not used */
|
|
#endif
|
|
|
|
#if defined(CONFIG_UART_INTERRUPT_DRIVEN) || defined(CONFIG_UART_ASYNC_API) || \
|
|
defined(CONFIG_PM)
|
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) \
|
|
.irq_config_func = uart_stm32_irq_config_func_##index,
|
|
#else
|
|
#define STM32_UART_IRQ_HANDLER_FUNC(index) /* Not used */
|
|
#endif
|
|
|
|
#ifdef CONFIG_UART_ASYNC_API
|
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest) \
|
|
.dma_##dir = { \
|
|
COND_CODE_1(DT_INST_DMAS_HAS_NAME(index, dir), \
|
|
(UART_DMA_CHANNEL_INIT(index, dir, DIR, src, dest)), \
|
|
(NULL)) \
|
|
},
|
|
|
|
#else
|
|
#define UART_DMA_CHANNEL(index, dir, DIR, src, dest)
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
#define STM32_UART_PM_WAKEUP(index) \
|
|
.wakeup_source = DT_INST_PROP(index, wakeup_source), \
|
|
.wakeup_line = COND_CODE_1(DT_INST_NODE_HAS_PROP(index, wakeup_line), \
|
|
(DT_INST_PROP(index, wakeup_line)), \
|
|
(STM32_WAKEUP_LINE_NONE)),
|
|
#else
|
|
#define STM32_UART_PM_WAKEUP(index) /* Not used */
|
|
#endif
|
|
|
|
/* Ensure DTS doesn't present an incompatible parity configuration.
|
|
* Mark/space parity isn't supported on the STM32 family.
|
|
* If 9 data bits are configured, ensure that a parity bit isn't set.
|
|
*/
|
|
#define STM32_UART_CHECK_DT_PARITY(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
|
|
== UART_CFG_PARITY_MARK || \
|
|
DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
|
|
== UART_CFG_PARITY_SPACE), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported parity configuration"); \
|
|
BUILD_ASSERT( \
|
|
!(DT_INST_ENUM_IDX_OR(index, parity, STM32_UART_DEFAULT_PARITY) \
|
|
!= UART_CFG_PARITY_NONE && \
|
|
DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_9), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported parity + data bits combination");
|
|
|
|
/* Ensure DTS doesn't present an incompatible data bits configuration
|
|
* The STM32 family doesn't support 5 data bits, or 6 data bits without parity.
|
|
* Only some series support 7 data bits.
|
|
*/
|
|
#ifdef LL_USART_DATAWIDTH_7B
|
|
#define STM32_UART_CHECK_DT_DATA_BITS(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_5 || \
|
|
(DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_6 && \
|
|
DT_INST_ENUM_IDX_OR(index, parity, \
|
|
STM32_UART_DEFAULT_PARITY) \
|
|
== UART_CFG_PARITY_NONE)), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported data bits configuration");
|
|
#else
|
|
#define STM32_UART_CHECK_DT_DATA_BITS(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_5 || \
|
|
DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_6 || \
|
|
(DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS) \
|
|
== UART_CFG_DATA_BITS_7 && \
|
|
DT_INST_ENUM_IDX_OR(index, parity, \
|
|
STM32_UART_DEFAULT_PARITY) \
|
|
== UART_CFG_PARITY_NONE)), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported data bits configuration");
|
|
#endif
|
|
|
|
/* Ensure DTS doesn't present an incompatible stop bits configuration.
|
|
* Some STM32 series USARTs don't support 0.5 stop bits, and it generally isn't
|
|
* supported for LPUART.
|
|
*/
|
|
#ifndef LL_USART_STOPBITS_0_5
|
|
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_INST_ENUM_IDX_OR(index, stop_bits, \
|
|
STM32_UART_DEFAULT_STOP_BITS) \
|
|
== UART_CFG_STOP_BITS_0_5), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported stop bits configuration");
|
|
/* LPUARTs don't support 0.5 stop bits configurations */
|
|
#else
|
|
#define STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \
|
|
DT_INST_ENUM_IDX_OR(index, stop_bits, \
|
|
STM32_UART_DEFAULT_STOP_BITS) \
|
|
== UART_CFG_STOP_BITS_0_5), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported stop bits configuration");
|
|
#endif
|
|
|
|
/* Ensure DTS doesn't present an incompatible stop bits configuration.
|
|
* Some STM32 series USARTs don't support 1.5 stop bits, and it generally isn't
|
|
* supported for LPUART.
|
|
*/
|
|
#ifndef LL_USART_STOPBITS_1_5
|
|
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \
|
|
BUILD_ASSERT( \
|
|
DT_INST_ENUM_IDX_OR(index, stop_bits, \
|
|
STM32_UART_DEFAULT_STOP_BITS) \
|
|
!= UART_CFG_STOP_BITS_1_5, \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported stop bits configuration");
|
|
/* LPUARTs don't support 1.5 stop bits configurations */
|
|
#else
|
|
#define STM32_UART_CHECK_DT_STOP_BITS_1_5(index) \
|
|
BUILD_ASSERT( \
|
|
!(DT_HAS_COMPAT_STATUS_OKAY(st_stm32_lpuart) && \
|
|
DT_INST_ENUM_IDX_OR(index, stop_bits, \
|
|
STM32_UART_DEFAULT_STOP_BITS) \
|
|
== UART_CFG_STOP_BITS_1_5), \
|
|
"Node " DT_NODE_PATH(DT_DRV_INST(index)) \
|
|
" has unsupported stop bits configuration");
|
|
#endif
|
|
|
|
#define STM32_UART_INIT(index) \
|
|
STM32_UART_IRQ_HANDLER_DECL(index) \
|
|
\
|
|
PINCTRL_DT_INST_DEFINE(index); \
|
|
\
|
|
static const struct stm32_pclken pclken_##index[] = \
|
|
STM32_DT_INST_CLOCKS(index);\
|
|
\
|
|
static struct uart_config uart_cfg_##index = { \
|
|
.baudrate = DT_INST_PROP_OR(index, current_speed, \
|
|
STM32_UART_DEFAULT_BAUDRATE), \
|
|
.parity = DT_INST_ENUM_IDX_OR(index, parity, \
|
|
STM32_UART_DEFAULT_PARITY), \
|
|
.stop_bits = DT_INST_ENUM_IDX_OR(index, stop_bits, \
|
|
STM32_UART_DEFAULT_STOP_BITS), \
|
|
.data_bits = DT_INST_ENUM_IDX_OR(index, data_bits, \
|
|
STM32_UART_DEFAULT_DATA_BITS), \
|
|
.flow_ctrl = DT_INST_PROP(index, hw_flow_control) \
|
|
? UART_CFG_FLOW_CTRL_RTS_CTS \
|
|
: UART_CFG_FLOW_CTRL_NONE, \
|
|
}; \
|
|
\
|
|
static const struct uart_stm32_config uart_stm32_cfg_##index = { \
|
|
.usart = (USART_TypeDef *)DT_INST_REG_ADDR(index), \
|
|
.reset = RESET_DT_SPEC_GET(DT_DRV_INST(index)), \
|
|
.pclken = pclken_##index, \
|
|
.pclk_len = DT_INST_NUM_CLOCKS(index), \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \
|
|
.single_wire = DT_INST_PROP(index, single_wire), \
|
|
.tx_rx_swap = DT_INST_PROP(index, tx_rx_swap), \
|
|
.rx_invert = DT_INST_PROP(index, rx_invert), \
|
|
.tx_invert = DT_INST_PROP(index, tx_invert), \
|
|
.de_enable = DT_INST_PROP(index, de_enable), \
|
|
.de_assert_time = DT_INST_PROP(index, de_assert_time), \
|
|
.de_deassert_time = DT_INST_PROP(index, de_deassert_time), \
|
|
.de_invert = DT_INST_PROP(index, de_invert), \
|
|
.fifo_enable = DT_INST_PROP(index, fifo_enable), \
|
|
STM32_UART_IRQ_HANDLER_FUNC(index) \
|
|
STM32_UART_PM_WAKEUP(index) \
|
|
}; \
|
|
\
|
|
static struct uart_stm32_data uart_stm32_data_##index = { \
|
|
.uart_cfg = &uart_cfg_##index, \
|
|
UART_DMA_CHANNEL(index, rx, RX, PERIPHERAL, MEMORY) \
|
|
UART_DMA_CHANNEL(index, tx, TX, MEMORY, PERIPHERAL) \
|
|
}; \
|
|
\
|
|
PM_DEVICE_DT_INST_DEFINE(index, uart_stm32_pm_action); \
|
|
\
|
|
DEVICE_DT_INST_DEFINE(index, \
|
|
uart_stm32_init, \
|
|
PM_DEVICE_DT_INST_GET(index), \
|
|
&uart_stm32_data_##index, &uart_stm32_cfg_##index, \
|
|
PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
|
|
&uart_stm32_driver_api); \
|
|
\
|
|
STM32_UART_IRQ_HANDLER(index) \
|
|
\
|
|
STM32_UART_CHECK_DT_PARITY(index) \
|
|
STM32_UART_CHECK_DT_DATA_BITS(index) \
|
|
STM32_UART_CHECK_DT_STOP_BITS_0_5(index) \
|
|
STM32_UART_CHECK_DT_STOP_BITS_1_5(index)
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)
|