zephyr/drivers/mipi_dsi/dsi_stm32.c

513 lines
18 KiB
C

/*
* Copyright (c) 2023 bytes at work AG
* Copyright (c) 2020 Teslabs Engineering S.L.
* based on dsi_mcux.c
* Copyright (c) 2022, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT st_stm32_mipi_dsi
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/sys/printk.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/mipi_dsi.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(dsi_stm32, CONFIG_MIPI_DSI_LOG_LEVEL);
#if defined(CONFIG_STM32_LTDC_ARGB8888)
#define STM32_DSI_INIT_PIXEL_FORMAT DSI_RGB888
#elif defined(CONFIG_STM32_LTDC_RGB888)
#define STM32_DSI_INIT_PIXEL_FORMAT DSI_RGB888
#elif defined(CONFIG_STM32_LTDC_RGB565)
#define STM32_DSI_INIT_PIXEL_FORMAT DSI_RGB565
#else
#error "Invalid LTDC pixel format chosen"
#endif /* CONFIG_STM32_LTDC_ARGB8888 */
#define MAX_TX_ESC_CLK_KHZ 20000
#define MAX_TX_ESC_CLK_DIV 8
struct mipi_dsi_stm32_config {
const struct device *rcc;
const struct reset_dt_spec reset;
struct stm32_pclken dsi_clk;
struct stm32_pclken ref_clk;
struct stm32_pclken pix_clk;
uint32_t data_lanes;
uint32_t active_errors;
uint32_t lp_rx_filter_freq;
int test_pattern;
};
struct mipi_dsi_stm32_data {
DSI_HandleTypeDef hdsi;
DSI_HOST_TimeoutTypeDef *host_timeouts;
DSI_PHY_TimerTypeDef *phy_timings;
DSI_VidCfgTypeDef vid_cfg;
DSI_PLLInitTypeDef pll_init;
uint32_t lane_clk_khz;
uint32_t pixel_clk_khz;
};
static void mipi_dsi_stm32_log_config(const struct device *dev)
{
const struct mipi_dsi_stm32_config *config = dev->config;
struct mipi_dsi_stm32_data *data = dev->data;
LOG_DBG("DISPLAY: pix %d kHz, lane %d kHz", data->pixel_clk_khz, data->lane_clk_khz);
LOG_DBG("HAL_DSI_Init setup:");
LOG_DBG(" AutomaticClockLaneControl 0x%x", data->hdsi.Init.AutomaticClockLaneControl);
LOG_DBG(" TXEscapeCkdiv %u", data->hdsi.Init.TXEscapeCkdiv);
LOG_DBG(" NumberOfLanes %u", data->hdsi.Init.NumberOfLanes);
LOG_DBG(" PLLNDIV %u", data->pll_init.PLLNDIV);
LOG_DBG(" PLLIDF %u", data->pll_init.PLLIDF);
LOG_DBG(" PLLODF %u", data->pll_init.PLLODF);
LOG_DBG("HAL_DSI_ConfigVideoMode setup:");
LOG_DBG(" VirtualChannelID %u", data->vid_cfg.VirtualChannelID);
LOG_DBG(" ColorCoding 0x%x", data->vid_cfg.ColorCoding);
LOG_DBG(" LooselyPacked 0x%x", data->vid_cfg.LooselyPacked);
LOG_DBG(" Mode 0x%x", data->vid_cfg.Mode);
LOG_DBG(" PacketSize %u", data->vid_cfg.PacketSize);
LOG_DBG(" NumberOfChunks %u", data->vid_cfg.NumberOfChunks);
LOG_DBG(" NullPacketSize %u", data->vid_cfg.NullPacketSize);
LOG_DBG(" HSPolarity 0x%x", data->vid_cfg.HSPolarity);
LOG_DBG(" VSPolarity 0x%x", data->vid_cfg.VSPolarity);
LOG_DBG(" DEPolarity 0x%x", data->vid_cfg.DEPolarity);
LOG_DBG(" HorizontalSyncActive %u", data->vid_cfg.HorizontalSyncActive);
LOG_DBG(" HorizontalBackPorch %u", data->vid_cfg.HorizontalBackPorch);
LOG_DBG(" HorizontalLine %u", data->vid_cfg.HorizontalLine);
LOG_DBG(" VerticalSyncActive %u", data->vid_cfg.VerticalSyncActive);
LOG_DBG(" VerticalBackPorch %u", data->vid_cfg.VerticalBackPorch);
LOG_DBG(" VerticalFrontPorch %u", data->vid_cfg.VerticalFrontPorch);
LOG_DBG(" VerticalActive %u", data->vid_cfg.VerticalActive);
LOG_DBG(" LPCommandEnable 0x%x", data->vid_cfg.LPCommandEnable);
LOG_DBG(" LPLargestPacketSize %u", data->vid_cfg.LPLargestPacketSize);
LOG_DBG(" LPVACTLargestPacketSize %u", data->vid_cfg.LPVACTLargestPacketSize);
LOG_DBG(" LPHorizontalFrontPorchEnable 0x%x", data->vid_cfg.LPHorizontalFrontPorchEnable);
LOG_DBG(" LPHorizontalBackPorchEnable 0x%x", data->vid_cfg.LPHorizontalBackPorchEnable);
LOG_DBG(" LPVerticalActiveEnable 0x%x", data->vid_cfg.LPVerticalActiveEnable);
LOG_DBG(" LPVerticalFrontPorchEnable 0x%x", data->vid_cfg.LPVerticalFrontPorchEnable);
LOG_DBG(" LPVerticalBackPorchEnable 0x%x", data->vid_cfg.LPVerticalBackPorchEnable);
LOG_DBG(" LPVerticalSyncActiveEnable 0x%x", data->vid_cfg.LPVerticalSyncActiveEnable);
LOG_DBG(" FrameBTAAcknowledgeEnable 0x%x", data->vid_cfg.FrameBTAAcknowledgeEnable);
if (config->active_errors) {
LOG_DBG("HAL_DSI_ConfigErrorMonitor: 0x%x", config->active_errors);
}
if (config->lp_rx_filter_freq) {
LOG_DBG("HAL_DSI_SetLowPowerRXFilter: %d", config->lp_rx_filter_freq);
}
if (data->host_timeouts) {
DSI_HOST_TimeoutTypeDef *ht = data->host_timeouts;
LOG_DBG("HAL_DSI_ConfigHostTimeouts:");
LOG_DBG(" TimeoutCkdiv %u", ht->TimeoutCkdiv);
LOG_DBG(" HighSpeedTransmissionTimeout %u", ht->HighSpeedTransmissionTimeout);
LOG_DBG(" LowPowerReceptionTimeout %u", ht->LowPowerReceptionTimeout);
LOG_DBG(" HighSpeedReadTimeout %u", ht->HighSpeedReadTimeout);
LOG_DBG(" LowPowerReadTimeout %u", ht->LowPowerReadTimeout);
LOG_DBG(" HighSpeedWriteTimeout %u", ht->HighSpeedWriteTimeout);
LOG_DBG(" HighSpeedWritePrespMode %u", ht->HighSpeedWritePrespMode);
LOG_DBG(" LowPowerWriteTimeout %u", ht->LowPowerWriteTimeout);
LOG_DBG(" BTATimeout %u", ht->BTATimeout);
}
if (data->phy_timings) {
LOG_DBG("HAL_DSI_ConfigPhyTimer:");
LOG_DBG(" ClockLaneHS2LPTime %u", data->phy_timings->ClockLaneHS2LPTime);
LOG_DBG(" ClockLaneLP2HSTime %u", data->phy_timings->ClockLaneLP2HSTime);
LOG_DBG(" DataLaneHS2LPTime %u", data->phy_timings->DataLaneHS2LPTime);
LOG_DBG(" DataLaneLP2HSTime %u", data->phy_timings->DataLaneLP2HSTime);
LOG_DBG(" DataLaneMaxReadTime %u", data->phy_timings->DataLaneMaxReadTime);
LOG_DBG(" StopWaitTime %u", data->phy_timings->StopWaitTime);
}
}
static int mipi_dsi_stm32_host_init(const struct device *dev)
{
const struct mipi_dsi_stm32_config *config = dev->config;
struct mipi_dsi_stm32_data *data = dev->data;
uint32_t hse_clock;
int ret;
switch (config->data_lanes) {
case 1:
data->hdsi.Init.NumberOfLanes = DSI_ONE_DATA_LANE;
break;
case 2:
data->hdsi.Init.NumberOfLanes = DSI_TWO_DATA_LANES;
break;
default:
LOG_ERR("Number of DSI lanes (%d) not supported!", config->data_lanes);
return -ENOTSUP;
}
ret = clock_control_get_rate(config->rcc, (clock_control_subsys_t)&config->pix_clk,
&data->pixel_clk_khz);
if (ret) {
LOG_ERR("Get pixel clock failed! (%d)", ret);
return ret;
}
data->pixel_clk_khz /= 1000;
ret = clock_control_get_rate(config->rcc, (clock_control_subsys_t)&config->ref_clk,
&hse_clock);
if (ret) {
LOG_ERR("Get HSE clock failed! (%d)", ret);
return ret;
}
/* LANE_BYTE_CLOCK = CLK_IN / PLLIDF * 2 * PLLNDIV / 2 / PLLODF / 8 */
data->lane_clk_khz = hse_clock / data->pll_init.PLLIDF * 2 * data->pll_init.PLLNDIV / 2 /
(1UL << data->pll_init.PLLODF) / 8 / 1000;
/* stm32x_hal_dsi: The values 0 and 1 stop the TX_ESC clock generation */
data->hdsi.Init.TXEscapeCkdiv = 0;
for (int i = 2; i <= MAX_TX_ESC_CLK_DIV; i++) {
if ((data->lane_clk_khz / i) <= MAX_TX_ESC_CLK_KHZ) {
data->hdsi.Init.TXEscapeCkdiv = i;
break;
}
}
if (data->hdsi.Init.TXEscapeCkdiv < 2) {
LOG_WRN("DSI TX escape clock disabled.");
}
ret = HAL_DSI_Init(&data->hdsi, &data->pll_init);
if (ret != HAL_OK) {
LOG_ERR("DSI init failed! (%d)", ret);
return -ret;
}
if (data->host_timeouts) {
ret = HAL_DSI_ConfigHostTimeouts(&data->hdsi, data->host_timeouts);
if (ret != HAL_OK) {
LOG_ERR("Set DSI host timeouts failed! (%d)", ret);
return -ret;
}
}
if (data->phy_timings) {
ret = HAL_DSI_ConfigPhyTimer(&data->hdsi, data->phy_timings);
if (ret != HAL_OK) {
LOG_ERR("Set DSI PHY timings failed! (%d)", ret);
return -ret;
}
}
ret = HAL_DSI_ConfigFlowControl(&data->hdsi, DSI_FLOW_CONTROL_BTA);
if (ret != HAL_OK) {
LOG_ERR("Setup DSI flow control failed! (%d)", ret);
return -ret;
}
if (config->lp_rx_filter_freq) {
ret = HAL_DSI_SetLowPowerRXFilter(&data->hdsi, config->lp_rx_filter_freq);
if (ret != HAL_OK) {
LOG_ERR("Setup DSI LP RX filter failed! (%d)", ret);
return -ret;
}
}
ret = HAL_DSI_ConfigErrorMonitor(&data->hdsi, config->active_errors);
if (ret != HAL_OK) {
LOG_ERR("Setup DSI error monitor failed! (%d)", ret);
return -ret;
}
return 0;
}
static int mipi_dsi_stm32_attach(const struct device *dev, uint8_t channel,
const struct mipi_dsi_device *mdev)
{
const struct mipi_dsi_stm32_config *config = dev->config;
struct mipi_dsi_stm32_data *data = dev->data;
DSI_VidCfgTypeDef *vcfg = &data->vid_cfg;
int ret;
if (!(mdev->mode_flags & MIPI_DSI_MODE_VIDEO)) {
LOG_ERR("DSI host supports video mode only!");
return -ENOTSUP;
}
vcfg->VirtualChannelID = channel;
vcfg->ColorCoding = STM32_DSI_INIT_PIXEL_FORMAT;
if (mdev->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) {
vcfg->Mode = DSI_VID_MODE_BURST;
} else if (mdev->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
vcfg->Mode = DSI_VID_MODE_NB_PULSES;
} else {
vcfg->Mode = DSI_VID_MODE_NB_EVENTS;
}
vcfg->PacketSize = mdev->timings.hactive;
vcfg->NumberOfChunks = 0;
vcfg->NullPacketSize = 0xFFFU;
vcfg->HorizontalSyncActive =
(mdev->timings.hsync * data->lane_clk_khz) / data->pixel_clk_khz;
vcfg->HorizontalBackPorch =
(mdev->timings.hbp * data->lane_clk_khz) / data->pixel_clk_khz;
vcfg->HorizontalLine =
((mdev->timings.hactive + mdev->timings.hsync + mdev->timings.hbp +
mdev->timings.hfp) * data->lane_clk_khz) / data->pixel_clk_khz;
vcfg->VerticalSyncActive = mdev->timings.vsync;
vcfg->VerticalBackPorch = mdev->timings.vbp;
vcfg->VerticalFrontPorch = mdev->timings.vfp;
vcfg->VerticalActive = mdev->timings.vactive;
if (mdev->mode_flags & MIPI_DSI_MODE_LPM) {
vcfg->LPCommandEnable = DSI_LP_COMMAND_ENABLE;
} else {
vcfg->LPCommandEnable = DSI_LP_COMMAND_DISABLE;
}
vcfg->LPHorizontalFrontPorchEnable = DSI_LP_HFP_ENABLE;
vcfg->LPHorizontalBackPorchEnable = DSI_LP_HBP_ENABLE;
vcfg->LPVerticalActiveEnable = DSI_LP_VACT_ENABLE;
vcfg->LPVerticalFrontPorchEnable = DSI_LP_VFP_ENABLE;
vcfg->LPVerticalBackPorchEnable = DSI_LP_VBP_ENABLE;
vcfg->LPVerticalSyncActiveEnable = DSI_LP_VSYNC_ENABLE;
ret = HAL_DSI_ConfigVideoMode(&data->hdsi, vcfg);
if (ret != HAL_OK) {
LOG_ERR("Setup DSI video mode failed! (%d)", ret);
return -ret;
}
if (IS_ENABLED(CONFIG_MIPI_DSI_LOG_LEVEL_DBG)) {
mipi_dsi_stm32_log_config(dev);
}
ret = HAL_DSI_Start(&data->hdsi);
if (ret != HAL_OK) {
LOG_ERR("Start DSI host failed! (%d)", ret);
return -ret;
}
if (config->test_pattern >= 0) {
ret = HAL_DSI_PatternGeneratorStart(&data->hdsi, 0, config->test_pattern);
if (ret != HAL_OK) {
LOG_ERR("Start DSI pattern generator failed! (%d)", ret);
return -ret;
}
}
return 0;
}
static ssize_t mipi_dsi_stm32_transfer(const struct device *dev, uint8_t channel,
struct mipi_dsi_msg *msg)
{
struct mipi_dsi_stm32_data *data = dev->data;
uint32_t param1 = 0;
uint32_t param2 = 0;
ssize_t len;
int ret;
switch (msg->type) {
case MIPI_DSI_DCS_READ:
ret = HAL_DSI_Read(&data->hdsi, channel, (uint8_t *)msg->rx_buf, msg->rx_len,
msg->type, msg->cmd, (uint8_t *)msg->rx_buf);
len = msg->rx_len;
break;
case MIPI_DSI_DCS_SHORT_WRITE:
case MIPI_DSI_DCS_SHORT_WRITE_PARAM:
param1 = msg->cmd;
if (msg->tx_len >= 1U) {
param2 = ((uint8_t *)msg->tx_buf)[0];
}
ret = HAL_DSI_ShortWrite(&data->hdsi, channel, msg->type, param1, param2);
len = msg->tx_len;
break;
case MIPI_DSI_DCS_LONG_WRITE:
ret = HAL_DSI_LongWrite(&data->hdsi, channel, msg->type, msg->tx_len, msg->cmd,
(uint8_t *)msg->tx_buf);
len = msg->tx_len;
break;
case MIPI_DSI_GENERIC_SHORT_WRITE_0_PARAM:
case MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM:
case MIPI_DSI_GENERIC_SHORT_WRITE_2_PARAM:
param1 = ((uint8_t *)msg->tx_buf)[0];
if (msg->tx_len == 1U) {
param2 = ((uint8_t *)msg->tx_buf)[1];
}
if (msg->tx_len >= 2U) {
param2 = *(uint16_t *)&((uint8_t *)msg->tx_buf)[1];
}
ret = HAL_DSI_ShortWrite(&data->hdsi, channel, msg->type, param1, param2);
len = msg->tx_len;
break;
case MIPI_DSI_GENERIC_LONG_WRITE:
ret = HAL_DSI_LongWrite(&data->hdsi, channel, msg->type, msg->tx_len,
((uint8_t *)msg->tx_buf)[0], &((uint8_t *)msg->tx_buf)[1]);
len = msg->tx_len;
break;
default:
LOG_ERR("Unsupported message type (%d)", msg->type);
return -ENOTSUP;
}
if (IS_ENABLED(CONFIG_MIPI_DSI_LOG_LEVEL_DBG)) {
char tmp[64];
if (msg->type == MIPI_DSI_DCS_READ) {
snprintk(tmp, sizeof(tmp), "RX: ch %3d, reg 0x%02x, len %2d",
channel, msg->cmd, msg->rx_len);
LOG_HEXDUMP_DBG(msg->rx_buf, msg->rx_len, tmp);
} else {
snprintk(tmp, sizeof(tmp), "TX: ch %3d, reg 0x%02x, len %2d",
channel, msg->cmd, msg->tx_len);
LOG_HEXDUMP_DBG(msg->tx_buf, msg->tx_len, tmp);
}
}
if (ret != HAL_OK) {
LOG_ERR("Transfer failed! (%d)", ret);
return -EIO;
}
return len;
}
static struct mipi_dsi_driver_api dsi_stm32_api = {
.attach = mipi_dsi_stm32_attach,
.transfer = mipi_dsi_stm32_transfer,
};
static int mipi_dsi_stm32_init(const struct device *dev)
{
const struct mipi_dsi_stm32_config *config = dev->config;
int ret;
if (!device_is_ready(config->rcc)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
ret = clock_control_on(config->rcc, (clock_control_subsys_t)&config->dsi_clk);
if (ret < 0) {
LOG_ERR("Enable DSI peripheral clock failed! (%d)", ret);
return ret;
}
(void)reset_line_toggle_dt(&config->reset);
ret = mipi_dsi_stm32_host_init(dev);
if (ret) {
LOG_ERR("Setup DSI host failed! (%d)", ret);
return ret;
}
return 0;
}
#define CHILD_GET_DATA_LANES(child) DT_PROP(child, data_lanes)
#define STM32_MIPI_DSI_DEVICE(inst) \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, host_timeouts), \
(static DSI_HOST_TimeoutTypeDef host_timeouts_##inst = { \
.TimeoutCkdiv = DT_INST_PROP_BY_IDX(inst, host_timeouts, 0), \
.HighSpeedTransmissionTimeout = \
DT_INST_PROP_BY_IDX(inst, host_timeouts, 1), \
.LowPowerReceptionTimeout = \
DT_INST_PROP_BY_IDX(inst, host_timeouts, 2), \
.HighSpeedReadTimeout = DT_INST_PROP_BY_IDX(inst, host_timeouts, 3), \
.LowPowerReadTimeout = DT_INST_PROP_BY_IDX(inst, host_timeouts, 4), \
.HighSpeedWriteTimeout = DT_INST_PROP_BY_IDX(inst, host_timeouts, 5), \
.HighSpeedWritePrespMode = DT_INST_PROP_BY_IDX(inst, host_timeouts, 6), \
.LowPowerWriteTimeout = DT_INST_PROP_BY_IDX(inst, host_timeouts, 7), \
.BTATimeout = DT_INST_PROP_BY_IDX(inst, host_timeouts, 8) \
}), ()); \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, phy_timings), \
(static DSI_PHY_TimerTypeDef phy_timings_##inst = { \
.ClockLaneHS2LPTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 0), \
.ClockLaneLP2HSTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 1), \
.DataLaneHS2LPTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 2), \
.DataLaneLP2HSTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 3), \
.DataLaneMaxReadTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 4), \
.StopWaitTime = DT_INST_PROP_BY_IDX(inst, phy_timings, 5) \
}), ()); \
/* Only child data-lanes property at index 0 is taken into account */ \
static const uint32_t data_lanes_##inst[] = { \
DT_INST_FOREACH_CHILD_STATUS_OKAY_SEP_VARGS(inst, DT_PROP_BY_IDX, (,), \
data_lanes, 0) \
}; \
static const struct mipi_dsi_stm32_config stm32_dsi_config_##inst = { \
.rcc = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), \
.reset = RESET_DT_SPEC_INST_GET(inst), \
.dsi_clk = { \
.enr = DT_INST_CLOCKS_CELL_BY_NAME(inst, dsiclk, bits), \
.bus = DT_INST_CLOCKS_CELL_BY_NAME(inst, dsiclk, bus), \
}, \
.ref_clk = { \
.enr = DT_INST_CLOCKS_CELL_BY_NAME(inst, refclk, bits), \
.bus = DT_INST_CLOCKS_CELL_BY_NAME(inst, refclk, bus), \
}, \
.pix_clk = { \
.enr = DT_INST_CLOCKS_CELL_BY_NAME(inst, pixelclk, bits), \
.bus = DT_INST_CLOCKS_CELL_BY_NAME(inst, pixelclk, bus), \
}, \
/* Use only one (the first) display configuration for DSI HOST configuration */ \
.data_lanes = data_lanes_##inst[0], \
.active_errors = DT_INST_PROP_OR(inst, active_errors, HAL_DSI_ERROR_NONE), \
.lp_rx_filter_freq = DT_INST_PROP_OR(inst, lp_rx_filter, 0), \
.test_pattern = DT_INST_PROP_OR(inst, test_pattern, -1), \
}; \
static struct mipi_dsi_stm32_data stm32_dsi_data_##inst = { \
.hdsi = { \
.Instance = (DSI_TypeDef *)DT_INST_REG_ADDR(inst), \
.Init = { \
.AutomaticClockLaneControl = \
DT_INST_PROP(inst, non_continuous) ? \
DSI_AUTO_CLK_LANE_CTRL_ENABLE : \
DSI_AUTO_CLK_LANE_CTRL_DISABLE, \
}, \
}, \
.host_timeouts = COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, host_timeouts), \
(&host_timeouts_##inst), (NULL)), \
.phy_timings = COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, phy_timings), \
(&phy_timings_##inst), (NULL)), \
.vid_cfg = { \
.HSPolarity = DT_INST_PROP(inst, hs_active_high) ? \
DSI_HSYNC_ACTIVE_HIGH : DSI_HSYNC_ACTIVE_LOW, \
.VSPolarity = DT_INST_PROP(inst, vs_active_high) ? \
DSI_VSYNC_ACTIVE_HIGH : DSI_VSYNC_ACTIVE_LOW, \
.DEPolarity = DT_INST_PROP(inst, de_active_high) ? \
DSI_DATA_ENABLE_ACTIVE_HIGH : DSI_DATA_ENABLE_ACTIVE_LOW, \
.LooselyPacked = DT_INST_PROP(inst, loosely_packed) ? \
DSI_LOOSELY_PACKED_ENABLE : DSI_LOOSELY_PACKED_DISABLE, \
.LPLargestPacketSize = DT_INST_PROP_OR(inst, largest_packet_size, 4), \
.LPVACTLargestPacketSize = DT_INST_PROP_OR(inst, largest_packet_size, 4), \
.FrameBTAAcknowledgeEnable = DT_INST_PROP(inst, bta_ack_disable) ? \
DSI_FBTAA_DISABLE : DSI_FBTAA_ENABLE, \
}, \
.pll_init = { \
.PLLNDIV = DT_INST_PROP(inst, pll_ndiv), \
.PLLIDF = DT_INST_PROP(inst, pll_idf), \
.PLLODF = DT_INST_PROP(inst, pll_odf), \
}, \
}; \
DEVICE_DT_INST_DEFINE(inst, &mipi_dsi_stm32_init, NULL, \
&stm32_dsi_data_##inst, &stm32_dsi_config_##inst, \
POST_KERNEL, CONFIG_MIPI_DSI_INIT_PRIORITY, &dsi_stm32_api);
DT_INST_FOREACH_STATUS_OKAY(STM32_MIPI_DSI_DEVICE)