zephyr/drivers/memc/memc_mspi_aps6404l.c

461 lines
17 KiB
C

/*
* Copyright (c) 2024, Ambiq Micro Inc. <www.ambiq.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT mspi_aps6404l
#include <zephyr/kernel.h>
#include <zephyr/pm/device.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/mspi.h>
#if CONFIG_SOC_FAMILY_AMBIQ
#include "mspi_ambiq.h"
typedef struct mspi_ambiq_timing_cfg mspi_timing_cfg;
typedef enum mspi_ambiq_timing_param mspi_timing_param;
#else
typedef struct mspi_timing_cfg mspi_timing_cfg;
typedef enum mspi_timing_param mspi_timing_param;
#endif
LOG_MODULE_REGISTER(memc_mspi_aps6404l, CONFIG_MEMC_LOG_LEVEL);
#define APM_VENDOR_ID 0xD
#define APS6404L_WRITE 0x02
#define APS6404L_READ 0x03
#define APS6404L_FAST_READ 0x0B
#define APS6404L_QUAD_MODE_ENTER 0x35
#define APS6404L_QUAD_WRITE 0x38
#define APS6404L_RESET_ENABLE 0x66
#define APS6404L_RESET_MEMORY 0x99
#define APS6404L_READ_ID 0x9F
#define APS6404L_HALF_SLEEP_ENTER 0xC0
#define APS6404L_QUAD_READ 0xEB
#define APS6404L_QUAD_MODE_EXIT 0xF5
struct memc_mspi_aps6404l_config {
uint32_t port;
uint32_t mem_size;
const struct device *bus;
struct mspi_dev_id dev_id;
struct mspi_dev_cfg serial_cfg;
struct mspi_dev_cfg quad_cfg;
struct mspi_dev_cfg tar_dev_cfg;
struct mspi_xip_cfg tar_xip_cfg;
struct mspi_scramble_cfg tar_scramble_cfg;
mspi_timing_cfg tar_timing_cfg;
mspi_timing_param timing_cfg_mask;
bool sw_multi_periph;
};
struct memc_mspi_aps6404l_data {
struct mspi_dev_cfg dev_cfg;
struct mspi_xip_cfg xip_cfg;
struct mspi_scramble_cfg scramble_cfg;
mspi_timing_cfg timing_cfg;
struct mspi_xfer trans;
struct mspi_xfer_packet packet;
struct k_sem lock;
};
static int memc_mspi_aps6404l_command_write(const struct device *psram, uint8_t cmd, uint32_t addr,
uint8_t *wdata, uint32_t length)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
int ret;
uint8_t buffer[16];
data->packet.dir = MSPI_TX;
data->packet.cmd = cmd;
data->packet.address = addr;
data->packet.data_buf = buffer;
data->packet.num_bytes = length;
data->trans.async = false;
data->trans.xfer_mode = MSPI_PIO;
data->trans.tx_dummy = 0;
data->trans.cmd_length = 1;
data->trans.addr_length = 0;
data->trans.hold_ce = false;
data->trans.packets = &data->packet;
data->trans.num_packet = 1;
data->trans.timeout = 10;
if (wdata != NULL) {
memcpy(buffer, wdata, length);
}
ret = mspi_transceive(cfg->bus, &cfg->dev_id, (const struct mspi_xfer *)&data->trans);
if (ret) {
LOG_ERR("MSPI write transaction failed with code: %d/%u", ret, __LINE__);
return -EIO;
}
return ret;
}
static int memc_mspi_aps6404l_command_read(const struct device *psram, uint8_t cmd, uint32_t addr,
uint8_t *rdata, uint32_t length)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
int ret;
uint8_t buffer[16];
data->packet.dir = MSPI_RX;
data->packet.cmd = cmd;
data->packet.address = addr;
data->packet.data_buf = buffer;
data->packet.num_bytes = length;
data->trans.async = false;
data->trans.xfer_mode = MSPI_PIO;
data->trans.rx_dummy = 0;
data->trans.cmd_length = 1;
data->trans.addr_length = 3;
data->trans.hold_ce = false;
data->trans.packets = &data->packet;
data->trans.num_packet = 1;
data->trans.timeout = 10;
ret = mspi_transceive(cfg->bus, &cfg->dev_id, (const struct mspi_xfer *)&data->trans);
if (ret) {
LOG_ERR("MSPI read transaction failed with code: %d/%u", ret, __LINE__);
return -EIO;
}
memcpy(rdata, buffer, length);
return ret;
}
static void acquire(const struct device *psram)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
k_sem_take(&data->lock, K_FOREVER);
if (cfg->sw_multi_periph) {
while (mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_ALL, &data->dev_cfg)) {
;
}
} else {
while (mspi_dev_config(cfg->bus, &cfg->dev_id,
MSPI_DEVICE_CONFIG_NONE, NULL)) {
;
}
}
}
static void release(const struct device *psram)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
while (mspi_get_channel_status(cfg->bus, cfg->port)) {
;
}
k_sem_give(&data->lock);
}
static int memc_mspi_aps6404l_reset(const struct device *psram)
{
int ret;
LOG_DBG("Resetting aps6404l/%u", __LINE__);
ret = memc_mspi_aps6404l_command_write(psram, APS6404L_RESET_ENABLE, 0, NULL, 0);
if (ret) {
return ret;
}
ret = memc_mspi_aps6404l_command_write(psram, APS6404L_RESET_MEMORY, 0, NULL, 0);
if (ret) {
return ret;
}
/** We need to delay 5 ms to allow aps6404L pSRAM to reinitialize */
k_busy_wait(5000);
return ret;
}
static int memc_mspi_aps6404l_get_vendor_id(const struct device *psram, uint8_t *vendor_id)
{
uint16_t buffer = 0;
int ret;
ret = memc_mspi_aps6404l_command_read(psram, APS6404L_READ_ID, 0, (uint8_t *)&buffer, 2);
LOG_DBG("Read ID buff: %x/%u", buffer, __LINE__);
*vendor_id = buffer & 0xff;
return ret;
}
#if CONFIG_PM_DEVICE
static int memc_mspi_aps6404l_half_sleep_enter(const struct device *psram)
{
int ret;
LOG_DBG("Putting aps6404l to half sleep/%u", __LINE__);
ret = memc_mspi_aps6404l_command_write(psram, APS6404L_HALF_SLEEP_ENTER, 0, NULL, 0);
if (ret) {
LOG_ERR("Failed to enter half sleep/%u", __LINE__);
return ret;
}
/** Minimum half sleep duration tHS time */
k_busy_wait(4);
return ret;
}
static int memc_mspi_aps6404l_half_sleep_exit(const struct device *psram)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
struct mspi_dev_cfg bkp = data->dev_cfg;
int ret = 0;
data->dev_cfg.freq = 48000000;
mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_FREQUENCY,
(const struct mspi_dev_cfg *)&data->dev_cfg);
LOG_DBG("Waking up aps6404l from half sleep/%u", __LINE__);
ret = memc_mspi_aps6404l_command_write(psram, 0, 0, NULL, 0);
if (ret) {
LOG_ERR("Failed to exit from half sleep/%u", __LINE__);
return ret;
}
/** Minimum half sleep exit CE to CLK setup time */
k_busy_wait(100);
data->dev_cfg = bkp;
ret = mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_FREQUENCY,
(const struct mspi_dev_cfg *)&data->dev_cfg);
if (ret) {
LOG_ERR("Failed to reconfigure MSPI after exiting half sleep/%u", __LINE__);
return ret;
}
return ret;
}
static int memc_mspi_aps6404l_pm_action(const struct device *psram, enum pm_device_action action)
{
switch (action) {
case PM_DEVICE_ACTION_RESUME:
acquire(psram);
memc_mspi_aps6404l_half_sleep_exit(psram);
release(psram);
break;
case PM_DEVICE_ACTION_SUSPEND:
acquire(psram);
memc_mspi_aps6404l_half_sleep_enter(psram);
release(psram);
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif /** IS_ENABLED(CONFIG_PM_DEVICE) */
static int memc_mspi_aps6404l_init(const struct device *psram)
{
const struct memc_mspi_aps6404l_config *cfg = psram->config;
struct memc_mspi_aps6404l_data *data = psram->data;
uint8_t vendor_id;
if (!device_is_ready(cfg->bus)) {
LOG_ERR("Controller device not ready/%u", __LINE__);
return -ENODEV;
}
switch (cfg->tar_dev_cfg.io_mode) {
case MSPI_IO_MODE_SINGLE:
case MSPI_IO_MODE_QUAD:
break;
default:
LOG_ERR("Bus mode %d not supported/%u", cfg->tar_dev_cfg.io_mode, __LINE__);
return -EIO;
}
if (data->dev_cfg.io_mode == MSPI_IO_MODE_QUAD) {
if (mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_ALL,
&cfg->quad_cfg)) {
LOG_ERR("Failed to config mspi controller/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->quad_cfg;
if (memc_mspi_aps6404l_reset(psram)) {
LOG_ERR("Could not reset pSRAM/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps6404l_command_write(psram, APS6404L_QUAD_MODE_EXIT, 0, NULL, 0)) {
LOG_ERR("Could not exit quad mode/%u", __LINE__);
return -EIO;
}
}
if (mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_ALL, &cfg->serial_cfg)) {
LOG_ERR("Failed to config mspi controller/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->serial_cfg;
if (memc_mspi_aps6404l_reset(psram)) {
LOG_ERR("Could not reset pSRAM/%u", __LINE__);
return -EIO;
}
if (memc_mspi_aps6404l_get_vendor_id(psram, &vendor_id)) {
LOG_ERR("Could not read vendor id/%u", __LINE__);
return -EIO;
}
LOG_DBG("Vendor id: 0x%0x", vendor_id);
if (vendor_id != APM_VENDOR_ID) {
LOG_WRN("Vendor ID does not match expected value of 0x%0x/%u", APM_VENDOR_ID,
__LINE__);
}
if (cfg->tar_dev_cfg.io_mode == MSPI_IO_MODE_QUAD) {
if (memc_mspi_aps6404l_command_write(psram, APS6404L_QUAD_MODE_ENTER, 0, NULL, 0)) {
return -EIO;
}
}
if (mspi_dev_config(cfg->bus, &cfg->dev_id, MSPI_DEVICE_CONFIG_ALL, &cfg->tar_dev_cfg)) {
LOG_ERR("Failed to config mspi controller/%u", __LINE__);
return -EIO;
}
data->dev_cfg = cfg->tar_dev_cfg;
if (mspi_timing_config(cfg->bus, &cfg->dev_id, cfg->timing_cfg_mask,
(void *)&cfg->tar_timing_cfg)) {
LOG_ERR("Failed to config mspi timing/%u", __LINE__);
return -EIO;
}
data->timing_cfg = cfg->tar_timing_cfg;
if (cfg->tar_xip_cfg.enable) {
if (mspi_xip_config(cfg->bus, &cfg->dev_id, &cfg->tar_xip_cfg)) {
LOG_ERR("Failed to enable XIP/%u", __LINE__);
return -EIO;
}
data->xip_cfg = cfg->tar_xip_cfg;
}
if (cfg->tar_scramble_cfg.enable) {
if (mspi_scramble_config(cfg->bus, &cfg->dev_id, &cfg->tar_scramble_cfg)) {
LOG_ERR("Failed to enable scrambling/%u", __LINE__);
return -EIO;
}
data->scramble_cfg = cfg->tar_scramble_cfg;
}
release(psram);
return 0;
}
#define MSPI_DEVICE_CONFIG_SERIAL(n) \
{ \
.ce_num = DT_INST_PROP(n, mspi_hardware_ce_num), \
.freq = 12000000, \
.io_mode = MSPI_IO_MODE_SINGLE, \
.data_rate = MSPI_DATA_RATE_SINGLE, \
.cpp = MSPI_CPP_MODE_0, \
.endian = MSPI_XFER_LITTLE_ENDIAN, \
.ce_polarity = MSPI_CE_ACTIVE_LOW, \
.dqs_enable = false, \
.rx_dummy = 8, \
.tx_dummy = 0, \
.read_cmd = APS6404L_FAST_READ, \
.write_cmd = APS6404L_WRITE, \
.cmd_length = 1, \
.addr_length = 3, \
.mem_boundary = 1024, \
.time_to_break = 8, \
}
#define MSPI_DEVICE_CONFIG_QUAD(n) \
{ \
.ce_num = DT_INST_PROP(n, mspi_hardware_ce_num), \
.freq = 24000000, \
.io_mode = MSPI_IO_MODE_SINGLE, \
.data_rate = MSPI_DATA_RATE_SINGLE, \
.cpp = MSPI_CPP_MODE_0, \
.endian = MSPI_XFER_LITTLE_ENDIAN, \
.ce_polarity = MSPI_CE_ACTIVE_LOW, \
.dqs_enable = false, \
.rx_dummy = 6, \
.tx_dummy = 0, \
.read_cmd = APS6404L_QUAD_READ, \
.write_cmd = APS6404L_QUAD_WRITE, \
.cmd_length = 1, \
.addr_length = 3, \
.mem_boundary = 1024, \
.time_to_break = 4, \
}
#if CONFIG_SOC_FAMILY_AMBIQ
#define MSPI_TIMING_CONFIG(n) \
{ \
.ui8WriteLatency = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 0), \
.ui8TurnAround = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 1), \
.bTxNeg = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 2), \
.bRxNeg = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 3), \
.bRxCap = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 4), \
.ui32TxDQSDelay = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 5), \
.ui32RxDQSDelay = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 6), \
.ui32RXDQSDelayEXT = DT_INST_PROP_BY_IDX(n, ambiq_timing_config, 7), \
}
#define MSPI_TIMING_CONFIG_MASK(n) DT_INST_PROP(n, ambiq_timing_config_mask)
#else
#define MSPI_TIMING_CONFIG(n)
#define MSPI_TIMING_CONFIG_MASK(n)
#endif
#define MEMC_MSPI_APS6404L(n) \
static const struct memc_mspi_aps6404l_config \
memc_mspi_aps6404l_config_##n = { \
.port = MSPI_PORT(n), \
.mem_size = DT_INST_PROP(n, size) / 8, \
.bus = DEVICE_DT_GET(DT_INST_BUS(n)), \
.dev_id = MSPI_DEVICE_ID_DT_INST(n), \
.serial_cfg = MSPI_DEVICE_CONFIG_SERIAL(n), \
.quad_cfg = MSPI_DEVICE_CONFIG_QUAD(n), \
.tar_dev_cfg = MSPI_DEVICE_CONFIG_DT_INST(n), \
.tar_xip_cfg = MSPI_XIP_CONFIG_DT_INST(n), \
.tar_scramble_cfg = MSPI_SCRAMBLE_CONFIG_DT_INST(n), \
.tar_timing_cfg = MSPI_TIMING_CONFIG(n), \
.timing_cfg_mask = MSPI_TIMING_CONFIG_MASK(n), \
.sw_multi_periph = DT_PROP(DT_INST_BUS(n), software_multiperipheral) \
}; \
static struct memc_mspi_aps6404l_data \
memc_mspi_aps6404l_data_##n = { \
.lock = Z_SEM_INITIALIZER(memc_mspi_aps6404l_data_##n.lock, 0, 1), \
}; \
PM_DEVICE_DT_INST_DEFINE(n, memc_mspi_aps6404l_pm_action); \
DEVICE_DT_INST_DEFINE(n, \
memc_mspi_aps6404l_init, \
PM_DEVICE_DT_INST_GET(n), \
&memc_mspi_aps6404l_data_##n, \
&memc_mspi_aps6404l_config_##n, \
POST_KERNEL, \
CONFIG_MEMC_INIT_PRIORITY, \
NULL);
DT_INST_FOREACH_STATUS_OKAY(MEMC_MSPI_APS6404L)