zephyr/drivers/flash/soc_flash_nrf_rram.c

370 lines
9.0 KiB
C

/*
* Copyright (c) 2024 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_rram_controller
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <zephyr/sys/barrier.h>
#include <hal/nrf_rramc.h>
#include <zephyr/../../drivers/flash/soc_flash_nrf.h>
/* Note that it is supported to compile this driver for both secure
* and non-secure images, but non-secure images cannot call
* nrf_rramc_config_set because NRF_RRAMC_NS does not exist.
*
* Instead, when TF-M boots, it will configure RRAMC with this static
* configuration:
*
* nrf_rramc_config_t config = {
* .mode_write = true,
* .write_buff_size = WRITE_BUFFER_SIZE
* };
*
* nrf_rramc_ready_next_timeout_t params = {
* .value = CONFIG_NRF_RRAM_READYNEXT_TIMEOUT_VALUE,
* .enable = true,
* };
*
* For more details see NCSDK-26982.
*/
LOG_MODULE_REGISTER(flash_nrf_rram, CONFIG_FLASH_LOG_LEVEL);
#define RRAM DT_INST(0, soc_nv_flash)
#if defined(CONFIG_SOC_SERIES_BSIM_NRFXX)
#define RRAM_START NRF_RRAM_BASE_ADDR
#else
#define RRAM_START DT_REG_ADDR(RRAM)
#endif
#define RRAM_SIZE DT_REG_SIZE(RRAM)
#define PAGE_SIZE DT_PROP(RRAM, erase_block_size)
#define PAGE_COUNT ((RRAM_SIZE) / (PAGE_SIZE))
#define WRITE_BLOCK_SIZE_FROM_DT DT_PROP(RRAM, write_block_size)
#define ERASE_VALUE 0xFF
#ifdef CONFIG_MULTITHREADING
static struct k_sem sem_lock;
#define SYNC_INIT() k_sem_init(&sem_lock, 1, 1)
#define SYNC_LOCK() k_sem_take(&sem_lock, K_FOREVER)
#define SYNC_UNLOCK() k_sem_give(&sem_lock)
#else
#define SYNC_INIT()
#define SYNC_LOCK()
#define SYNC_UNLOCK()
#endif /* CONFIG_MULTITHREADING */
#if CONFIG_NRF_RRAM_WRITE_BUFFER_SIZE > 0
#define WRITE_BUFFER_ENABLE 1
#define WRITE_BUFFER_SIZE CONFIG_NRF_RRAM_WRITE_BUFFER_SIZE
#define WRITE_LINE_SIZE 16 /* In bytes, one line is 128 bits. */
#define WRITE_BUFFER_MAX_SIZE (WRITE_BUFFER_SIZE * WRITE_LINE_SIZE)
BUILD_ASSERT((PAGE_SIZE % (WRITE_LINE_SIZE) == 0), "erase-block-size must be a multiple of 16");
BUILD_ASSERT((WRITE_BLOCK_SIZE_FROM_DT % (WRITE_LINE_SIZE) == 0),
"if NRF_RRAM_WRITE_BUFFER_SIZE > 0, then write-block-size must be a multiple of 16");
#else
#define WRITE_BUFFER_ENABLE 0
#define WRITE_BUFFER_SIZE 0
#define WRITE_LINE_SIZE WRITE_BLOCK_SIZE_FROM_DT
#define WRITE_BUFFER_MAX_SIZE 16 /* In bytes, one line is 128 bits. */
BUILD_ASSERT((PAGE_SIZE % (WRITE_LINE_SIZE) == 0),
"erase-block-size must be a multiple of write-block-size");
#endif
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
#if (WRITE_BUFFER_SIZE < 2)
#define FLASH_SLOT_WRITE 500
#elif (WRITE_BUFFER_SIZE < 4)
#define FLASH_SLOT_WRITE 1000
#elif (WRITE_BUFFER_SIZE < 9)
#define FLASH_SLOT_WRITE 2000
#elif (WRITE_BUFFER_SIZE < 17)
#define FLASH_SLOT_WRITE 4000
#else
#define FLASH_SLOT_WRITE 8000 /* longest write takes 7107 us */
#endif
static int write_op(void *context); /* instance of flash_op_handler_t */
static int write_synchronously(off_t addr, const void *data, size_t len);
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
static inline bool is_within_bounds(off_t addr, size_t len, off_t boundary_start,
size_t boundary_size)
{
return (addr >= boundary_start && (addr < (boundary_start + boundary_size)) &&
(len <= (boundary_start + boundary_size - addr)));
}
#if WRITE_BUFFER_ENABLE
static void commit_changes(off_t addr, size_t len)
{
#if !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
if (nrf_rramc_empty_buffer_check(NRF_RRAMC)) {
/* The internal write-buffer has been committed to RRAM and is now empty. */
return;
}
#endif
if ((len % (WRITE_BUFFER_MAX_SIZE)) == 0) {
/* Our last operation was buffer size-aligned, so we're done. */
return;
}
#if !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
ARG_UNUSED(addr);
nrf_rramc_task_trigger(NRF_RRAMC, NRF_RRAMC_TASK_COMMIT_WRITEBUF);
#else
/*
* When the commit task is unavailable we need to get creative to
* ensure this is committed.
*
* According to the PS the buffer is committed when "There is a
* read operation from a 128-bit word line in the buffer that has
* already been written to".
*
* So we read the last byte that has been written to trigger this
* commit.
*
* If this approach proves to be problematic, e.g. for writes to
* write-only memory, then one would have to rely on
* READYNEXTTIMEOUT to eventually commit the write.
*/
volatile uint8_t dummy_read = *(volatile uint8_t *)(addr + len - 1);
ARG_UNUSED(dummy_read);
#endif
barrier_dmem_fence_full();
}
#endif
static void rram_write(off_t addr, const void *data, size_t len)
{
#if !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
nrf_rramc_config_t config = {.mode_write = true, .write_buff_size = WRITE_BUFFER_SIZE};
nrf_rramc_config_set(NRF_RRAMC, &config);
#endif
if (data) {
memcpy((void *)addr, data, len);
} else {
memset((void *)addr, ERASE_VALUE, len);
}
barrier_dmem_fence_full(); /* Barrier following our last write. */
#if WRITE_BUFFER_ENABLE
commit_changes(addr, len);
#endif
#if !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
config.mode_write = false;
nrf_rramc_config_set(NRF_RRAMC, &config);
#endif
}
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
static void shift_write_context(uint32_t shift, struct flash_context *w_ctx)
{
w_ctx->flash_addr += shift;
/* NULL data_addr => erase emulation request*/
if (w_ctx->data_addr) {
w_ctx->data_addr += shift;
}
w_ctx->len -= shift;
}
static int write_op(void *context)
{
struct flash_context *w_ctx = context;
size_t len;
uint32_t i = 0U;
if (w_ctx->enable_time_limit) {
nrf_flash_sync_get_timestamp_begin();
}
while (w_ctx->len > 0) {
len = (WRITE_BUFFER_MAX_SIZE < w_ctx->len) ? WRITE_BUFFER_MAX_SIZE : w_ctx->len;
rram_write(w_ctx->flash_addr, (const void *)w_ctx->data_addr, len);
shift_write_context(len, w_ctx);
if (w_ctx->len > 0) {
i++;
if (w_ctx->enable_time_limit) {
if (nrf_flash_sync_check_time_limit(i)) {
return FLASH_OP_ONGOING;
}
}
}
}
return FLASH_OP_DONE;
}
static int write_synchronously(off_t addr, const void *data, size_t len)
{
struct flash_context context = {
.data_addr = (uint32_t)data,
.flash_addr = addr,
.len = len,
.enable_time_limit = 1 /* enable time limit */
};
struct flash_op_desc flash_op_desc = {.handler = write_op, .context = &context};
nrf_flash_sync_set_context(FLASH_SLOT_WRITE);
return nrf_flash_sync_exe(&flash_op_desc);
}
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
static int nrf_write(off_t addr, const void *data, size_t len)
{
int ret = 0;
if (!is_within_bounds(addr, len, 0, RRAM_SIZE)) {
return -EINVAL;
}
addr += RRAM_START;
if (!len) {
return 0;
}
LOG_DBG("Write: %p:%zu", (void *)addr, len);
SYNC_LOCK();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
if (nrf_flash_sync_is_required()) {
ret = write_synchronously(addr, data, len);
} else
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
{
rram_write(addr, data, len);
}
SYNC_UNLOCK();
return ret;
}
static int nrf_rram_read(const struct device *dev, off_t addr, void *data, size_t len)
{
ARG_UNUSED(dev);
if (!is_within_bounds(addr, len, 0, RRAM_SIZE)) {
return -EINVAL;
}
addr += RRAM_START;
memcpy(data, (void *)addr, len);
return 0;
}
static int nrf_rram_write(const struct device *dev, off_t addr, const void *data, size_t len)
{
ARG_UNUSED(dev);
if (data == NULL) {
return -EINVAL;
}
return nrf_write(addr, data, len);
}
static int nrf_rram_erase(const struct device *dev, off_t addr, size_t len)
{
ARG_UNUSED(dev);
return nrf_write(addr, NULL, len);
}
static const struct flash_parameters *nrf_rram_get_parameters(const struct device *dev)
{
ARG_UNUSED(dev);
static const struct flash_parameters parameters = {
.write_block_size = WRITE_LINE_SIZE,
.erase_value = ERASE_VALUE,
.caps = {
.no_explicit_erase = true,
},
};
return &parameters;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void nrf_rram_page_layout(const struct device *dev, const struct flash_pages_layout **layout,
size_t *layout_size)
{
ARG_UNUSED(dev);
static const struct flash_pages_layout pages_layout = {
.pages_count = PAGE_COUNT,
.pages_size = PAGE_SIZE,
};
*layout = &pages_layout;
*layout_size = 1;
}
#endif
static const struct flash_driver_api nrf_rram_api = {
.read = nrf_rram_read,
.write = nrf_rram_write,
.erase = nrf_rram_erase,
.get_parameters = nrf_rram_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = nrf_rram_page_layout,
#endif
};
static int nrf_rram_init(const struct device *dev)
{
ARG_UNUSED(dev);
SYNC_INIT();
#ifndef CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE
nrf_flash_sync_init();
#endif /* !CONFIG_SOC_FLASH_NRF_RADIO_SYNC_NONE */
#if !defined(CONFIG_TRUSTED_EXECUTION_NONSECURE) && CONFIG_NRF_RRAM_READYNEXT_TIMEOUT_VALUE > 0
nrf_rramc_ready_next_timeout_t params = {
.value = CONFIG_NRF_RRAM_READYNEXT_TIMEOUT_VALUE,
.enable = true,
};
nrf_rramc_ready_next_timeout_set(NRF_RRAMC, &params);
#endif
return 0;
}
DEVICE_DT_INST_DEFINE(0, nrf_rram_init, NULL, NULL, NULL, POST_KERNEL, CONFIG_FLASH_INIT_PRIORITY,
&nrf_rram_api);