zephyr/drivers/flash/flash_mcux_flexspi_nor.c

1165 lines
34 KiB
C

/*
* Copyright 2020,2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_flexspi_nor
#include <zephyr/kernel.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/irq.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include "spi_nor.h"
#include "jesd216.h"
#include "memc_mcux_flexspi.h"
#ifdef CONFIG_HAS_MCUX_CACHE
#include <fsl_cache.h>
#endif
#define NOR_WRITE_SIZE 1
#define NOR_ERASE_VALUE 0xff
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE];
#endif
/*
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM
* at runtime, so that the chip does not access the flexspi to read program
* instructions while it is being written to
*
* Additionally, no data used by this driver should be stored in flash.
*/
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0)
#warning "Enabling flash driver logging and XIP mode simultaneously can cause \
read-while-write hazards. This configuration is not recommended."
#endif
LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL);
enum {
READ,
PAGE_PROGRAM,
READ_STATUS,
WRITE_ENABLE,
ERASE_SECTOR,
ERASE_BLOCK,
READ_ID,
READ_STATUS_REG,
ERASE_CHIP,
READ_JESD216,
/* Entries after this should be for scratch commands */
FLEXSPI_INSTR_PROG_END,
/* Used for temporary commands during initialization */
SCRATCH_CMD = FLEXSPI_INSTR_PROG_END,
SCRATCH_CMD2,
/* Must be last entry */
FLEXSPI_INSTR_END,
};
struct flash_flexspi_nor_config {
/* Note: don't use this controller reference in code. It is
* only used during init to copy the device structure from ROM
* into a RAM structure
*/
const struct device *controller;
};
/* Device variables used in critical sections should be in this structure */
struct flash_flexspi_nor_data {
struct device controller;
flexspi_device_config_t config;
flexspi_port_t port;
bool legacy_poll;
struct flash_pages_layout layout;
struct flash_parameters flash_parameters;
};
/* Initial LUT table */
static const uint32_t flash_flexspi_nor_base_lut[][MEMC_FLEXSPI_CMD_PER_SEQ] = {
/* 1S-1S-1S flash read command, should be compatible with all SPI nor flashes */
[READ] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_READ,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
[READ_JESD216] = {
/* Install read SFDP command */
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, JESD216_CMD_READ_SFDP,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 24),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_1PAD, 8,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x4),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0),
},
/* Standard 1S-1S-1S flash write command, can be switched to 1S-1S-4S when QE is set */
[PAGE_PROGRAM] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[WRITE_ENABLE] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WREN,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[ERASE_SECTOR] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
},
[ERASE_BLOCK] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_BE,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x18),
},
[ERASE_CHIP] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_CE,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0),
},
[READ_ID] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDID,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
},
[READ_STATUS_REG] = {
FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01),
},
};
/* Helper so we can read flash ID without flash access for XIP */
static int flash_flexspi_nor_read_id_helper(struct flash_flexspi_nor_data *data,
uint8_t *vendor_id)
{
uint32_t buffer = 0;
int ret;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Read,
.SeqNumber = 1,
.seqIndex = READ_ID,
.data = &buffer,
.dataSize = 3,
};
LOG_DBG("Reading id");
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret < 0) {
return ret;
}
memcpy(vendor_id, &buffer, 3);
return ret;
}
static int flash_flexspi_nor_read_id(const struct device *dev, uint8_t *vendor_id)
{
struct flash_flexspi_nor_data *data = dev->data;
return flash_flexspi_nor_read_id_helper(data, vendor_id);
}
static int flash_flexspi_nor_read_status(struct flash_flexspi_nor_data *data,
uint32_t *status)
{
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Read,
.SeqNumber = 1,
.seqIndex = READ_STATUS_REG,
.data = status,
.dataSize = 1,
};
LOG_DBG("Reading status register");
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_write_enable(struct flash_flexspi_nor_data *data)
{
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = WRITE_ENABLE,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Enabling write");
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_erase_sector(struct flash_flexspi_nor_data *data,
off_t offset)
{
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = ERASE_SECTOR,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Erasing sector at 0x%08zx", (ssize_t) offset);
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_erase_block(struct flash_flexspi_nor_data *data,
off_t offset)
{
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = ERASE_BLOCK,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Erasing block at 0x%08zx", (ssize_t) offset);
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_erase_chip(struct flash_flexspi_nor_data *data)
{
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.cmdType = kFLEXSPI_Command,
.SeqNumber = 1,
.seqIndex = ERASE_CHIP,
.data = NULL,
.dataSize = 0,
};
LOG_DBG("Erasing chip");
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_page_program(struct flash_flexspi_nor_data *data,
off_t offset, const void *buffer, size_t len)
{
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = data->port,
.cmdType = kFLEXSPI_Write,
.SeqNumber = 1,
.seqIndex = PAGE_PROGRAM,
.data = (uint32_t *) buffer,
.dataSize = len,
};
LOG_DBG("Page programming %d bytes to 0x%08zx", len, (ssize_t) offset);
return memc_flexspi_transfer(&data->controller, &transfer);
}
static int flash_flexspi_nor_wait_bus_busy(struct flash_flexspi_nor_data *data)
{
uint32_t status = 0;
int ret;
while (1) {
ret = flash_flexspi_nor_read_status(data, &status);
LOG_DBG("status: 0x%x", status);
if (ret) {
LOG_ERR("Could not read status");
return ret;
}
if (data->legacy_poll) {
if ((status & BIT(0)) == 0) {
break;
}
} else {
if (status & BIT(7)) {
break;
}
}
}
return 0;
}
static int flash_flexspi_nor_read(const struct device *dev, off_t offset,
void *buffer, size_t len)
{
struct flash_flexspi_nor_data *data = dev->data;
uint8_t *src = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
memcpy(buffer, src, len);
return 0;
}
static int flash_flexspi_nor_write(const struct device *dev, off_t offset,
const void *buffer, size_t len)
{
struct flash_flexspi_nor_data *data = dev->data;
size_t size = len;
uint8_t *src = (uint8_t *) buffer;
int i;
unsigned int key = 0;
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
while (len) {
/* If the offset isn't a multiple of the NOR page size, we first need
* to write the remaining part that fits, otherwise the write could
* be wrapped around within the same page
*/
i = MIN(SPI_NOR_PAGE_SIZE - (offset % SPI_NOR_PAGE_SIZE), len);
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
memcpy(nor_write_buf, src, i);
#endif
flash_flexspi_nor_write_enable(data);
#ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER
flash_flexspi_nor_page_program(data, offset, nor_write_buf, i);
#else
flash_flexspi_nor_page_program(data, offset, src, i);
#endif
flash_flexspi_nor_wait_bus_busy(data);
memc_flexspi_reset(&data->controller);
src += i;
offset += i;
len -= i;
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
return 0;
}
static int flash_flexspi_nor_erase(const struct device *dev, off_t offset,
size_t size)
{
struct flash_flexspi_nor_data *data = dev->data;
const size_t num_sectors = size / SPI_NOR_SECTOR_SIZE;
const size_t num_blocks = size / SPI_NOR_BLOCK_SIZE;
int i;
unsigned int key = 0;
uint8_t *dst = memc_flexspi_get_ahb_address(&data->controller,
data->port,
offset);
if (offset % SPI_NOR_SECTOR_SIZE) {
LOG_ERR("Invalid offset");
return -EINVAL;
}
if (size % SPI_NOR_SECTOR_SIZE) {
LOG_ERR("Invalid size");
return -EINVAL;
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
}
if ((offset == 0) && (size == data->config.flashSize * KB(1))) {
flash_flexspi_nor_write_enable(data);
flash_flexspi_nor_erase_chip(data);
flash_flexspi_nor_wait_bus_busy(data);
memc_flexspi_reset(&data->controller);
} else if ((0 == (offset % SPI_NOR_BLOCK_SIZE)) && (0 == (size % SPI_NOR_BLOCK_SIZE))) {
for (i = 0; i < num_blocks; i++) {
flash_flexspi_nor_write_enable(data);
flash_flexspi_nor_erase_block(data, offset);
flash_flexspi_nor_wait_bus_busy(data);
memc_flexspi_reset(&data->controller);
offset += SPI_NOR_BLOCK_SIZE;
}
} else {
for (i = 0; i < num_sectors; i++) {
flash_flexspi_nor_write_enable(data);
flash_flexspi_nor_erase_sector(data, offset);
flash_flexspi_nor_wait_bus_busy(data);
memc_flexspi_reset(&data->controller);
offset += SPI_NOR_SECTOR_SIZE;
}
}
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
#ifdef CONFIG_HAS_MCUX_CACHE
DCACHE_InvalidateByRange((uint32_t) dst, size);
#endif
return 0;
}
static const struct flash_parameters *flash_flexspi_nor_get_parameters(
const struct device *dev)
{
struct flash_flexspi_nor_data *data = dev->data;
return &data->flash_parameters;
}
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
static void flash_flexspi_nor_pages_layout(const struct device *dev,
const struct flash_pages_layout **layout, size_t *layout_size)
{
struct flash_flexspi_nor_data *data = dev->data;
*layout = &data->layout;
*layout_size = 1;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
/*
* This function enables quad mode, when supported. Otherwise it
* returns an error.
* @param dev: Flexspi device
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
* @param qer: DW15 quad enable parameter
* @return 0 if quad mode was entered, or -ENOTSUP if quad mode is not supported
*/
static int flash_flexspi_nor_quad_enable(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
uint8_t qer)
{
int ret;
uint32_t buffer = 0;
uint16_t bit = 0;
uint8_t rd_size, wr_size;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.SeqNumber = 1,
.data = &buffer,
};
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
switch (qer) {
case JESD216_DW15_QER_VAL_NONE:
/* No init needed */
return 0;
case JESD216_DW15_QER_VAL_S2B1v1:
case JESD216_DW15_QER_VAL_S2B1v4:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 1 of status register 2 */
bit = BIT(9);
rd_size = 2;
wr_size = 2;
break;
case JESD216_DW15_QER_VAL_S1B6:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 6 of status register 1 */
bit = BIT(6);
rd_size = 1;
wr_size = 1;
break;
case JESD216_DW15_QER_VAL_S2B7:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3F,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x3E,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 7 of status register 2 */
bit = BIT(7);
rd_size = 1;
wr_size = 1;
break;
case JESD216_DW15_QER_VAL_S2B1v5:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 1 of status register 2 */
bit = BIT(9);
rd_size = 1;
wr_size = 2;
break;
case JESD216_DW15_QER_VAL_S2B1v6:
/* Install read and write status command */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR2,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_WRSR2,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
/* Set bit 7 of status register 2 */
bit = BIT(7);
rd_size = 1;
wr_size = 1;
break;
default:
return -ENOTSUP;
}
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = rd_size;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Read;
/* Read status register */
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret < 0) {
return ret;
}
buffer |= bit;
transfer.dataSize = wr_size;
transfer.seqIndex = SCRATCH_CMD2;
transfer.cmdType = kFLEXSPI_Write;
return memc_flexspi_transfer(&data->controller, &transfer);
}
/*
* This function enables 4 byte addressing, when supported. Otherwise it
* returns an error.
* @param dev: Flexspi device
* @param flexspi_lut: flexspi lut table, useful if instruction writes are needed
* @param en4b: DW16 enable 4 byte mode parameter
* @return 0 if 4 byte mode was entered, or -ENOTSUP if 4 byte mode was not supported
*/
static int flash_flexspi_nor_4byte_enable(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ],
uint32_t en4b)
{
int ret;
uint32_t buffer = 0;
flexspi_transfer_t transfer = {
.deviceAddress = 0,
.port = data->port,
.SeqNumber = 1,
.data = &buffer,
};
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
if (en4b & BIT(6)) {
/* Flash is always in 4 byte mode. We just need to configure LUT */
return 0;
} else if (en4b & BIT(5)) {
/* Dedicated vendor instruction set, which we don't support. Exit here */
return -ENOTSUP;
} else if (en4b & BIT(4)) {
/* Set bit 0 of 16 bit configuration register */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB5,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x1);
flexspi_lut[SCRATCH_CMD2][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB1,
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x1);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 2;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Read;
/* Read config register */
ret = memc_flexspi_transfer(&data->controller, &transfer);
if (ret < 0) {
return ret;
}
buffer |= BIT(0);
/* Set config register */
transfer.seqIndex = SCRATCH_CMD2;
transfer.cmdType = kFLEXSPI_Read;
return memc_flexspi_transfer(&data->controller, &transfer);
} else if (en4b & BIT(1)) {
/* Issue write enable, then instruction 0xB7 */
flash_flexspi_nor_write_enable(data);
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 0;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Command;
return memc_flexspi_transfer(&data->controller, &transfer);
} else if (en4b & BIT(0)) {
/* Issue instruction 0xB7 */
flexspi_lut[SCRATCH_CMD][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xB7,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
ret = memc_flexspi_set_device_config(&data->controller,
&config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
transfer.dataSize = 0;
transfer.seqIndex = SCRATCH_CMD;
transfer.cmdType = kFLEXSPI_Command;
return memc_flexspi_transfer(&data->controller, &transfer);
}
/* Other methods not supported */
return -ENOTSUP;
}
/*
* This function configures the FlexSPI to manage the flash device
* based on values in SFDP header
* @param data: Flexspi device data
* @param header: SFDP header for flash
* @param bfp: basic flash parameters for flash
* @param flexspi_lut: LUT table, filled with READ LUT command
* @return 0 on success, or negative value on error
*/
static int flash_flexspi_nor_config_flash(struct flash_flexspi_nor_data *data,
struct jesd216_sfdp_header *header,
struct jesd216_bfp *bfp,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
{
struct jesd216_instr instr;
struct jesd216_bfp_dw16 dw16;
struct jesd216_bfp_dw15 dw15;
struct jesd216_bfp_dw14 dw14;
uint8_t addr_width;
uint8_t mode_cmd;
int ret;
addr_width = jesd216_bfp_addrbytes(bfp) ==
JESD216_SFDP_BFP_DW1_ADDRBYTES_VAL_4B ? 32 : 24;
/* Check to see if we can enable 4 byte addressing */
ret = jesd216_bfp_decode_dw16(&header->phdr[0], bfp, &dw16);
if (ret == 0) {
/* Attempt to enable 4 byte addressing */
ret = flash_flexspi_nor_4byte_enable(data, flexspi_lut,
dw16.enter_4ba);
if (ret == 0) {
/* Use 4 byte address width */
addr_width = 32;
/* Update LUT for ERASE_SECTOR and ERASE_BLOCK to use 32 bit addr */
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD,
SPI_NOR_CMD_SE, kFLEXSPI_Command_RADDR_SDR,
kFLEXSPI_1PAD, addr_width);
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD,
SPI_NOR_CMD_BE, kFLEXSPI_Command_RADDR_SDR,
kFLEXSPI_1PAD, addr_width);
}
}
/* Extract the read command.
* Note- enhanced XIP not currently supported, nor is 4-4-4 mode.
*/
if (jesd216_bfp_read_support(&header->phdr[0], bfp,
JESD216_MODE_144, &instr) > 0) {
LOG_DBG("Enable 144 mode");
/* Configure for 144 QUAD read mode */
if (instr.mode_clocks == 2) {
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
} else if (instr.mode_clocks == 1) {
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
} else if (instr.mode_clocks == 0) {
/* Just send dummy cycles during mode clock period */
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
} else {
return -ENOTSUP;
}
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, addr_width);
/* Note- we always set mode bits to 0x0 */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
mode_cmd, kFLEXSPI_4PAD, 0x00,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, instr.wait_states);
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Read 1S-4S-4S enable method */
ret = jesd216_bfp_decode_dw15(&header->phdr[0], bfp, &dw15);
if (ret == 0) {
ret = flash_flexspi_nor_quad_enable(data, flexspi_lut,
dw15.qer);
if (ret == 0) {
/* Now, install 1S-1S-4S page program command */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD,
SPI_NOR_CMD_PP_1_1_4, kFLEXSPI_Command_RADDR_SDR,
kFLEXSPI_1PAD, addr_width);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD,
0x4, kFLEXSPI_Command_STOP,
kFLEXSPI_1PAD, 0x0);
}
}
} else if (jesd216_bfp_read_support(&header->phdr[0], bfp,
JESD216_MODE_122, &instr) > 0) {
LOG_DBG("Enable 122 mode");
if (instr.mode_clocks == 4) {
mode_cmd = kFLEXSPI_Command_MODE8_SDR;
} else if (instr.mode_clocks == 2) {
mode_cmd = kFLEXSPI_Command_MODE4_SDR;
} else if (instr.mode_clocks == 1) {
mode_cmd = kFLEXSPI_Command_MODE2_SDR;
} else if (instr.mode_clocks == 0) {
/* Just send dummy cycles during mode clock period */
mode_cmd = kFLEXSPI_Command_DUMMY_SDR;
} else {
return -ENOTSUP;
}
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, instr.instr,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_2PAD, addr_width);
/* Note- we always set mode bits to 0x0 */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
mode_cmd, kFLEXSPI_2PAD, 0x0,
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_2PAD, instr.wait_states);
flexspi_lut[READ][2] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_READ_SDR, kFLEXSPI_2PAD, 0x02,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Now, install 1S-1S-2S page program command */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_1_2,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, addr_width);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_2PAD, 0x4,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
}
/* Default to 111 mode if no support exists, leave READ/WRITE untouched */
/* Now, read DW14 to determine the polling method we should use while programming */
ret = jesd216_bfp_decode_dw14(&header->phdr[0], bfp, &dw14);
if (ret < 0) {
/* Default to legacy polling mode */
dw14.poll_options = 0x0;
}
if (dw14.poll_options & BIT(1)) {
/* Read instruction used for polling is 0x70 */
data->legacy_poll = false;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x70,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
} else {
/* Read instruction used for polling is 0x05 */
data->legacy_poll = true;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
}
return 0;
}
/* Helper so we can avoid flash access while performing SFDP probe */
static int flash_flexspi_nor_sfdp_read_helper(struct flash_flexspi_nor_data *dev_data,
off_t offset, void *data, size_t len)
{
flexspi_transfer_t transfer = {
.deviceAddress = offset,
.port = dev_data->port,
.cmdType = kFLEXSPI_Read,
.seqIndex = READ_JESD216,
.SeqNumber = 1,
.data = (uint32_t *)data,
.dataSize = len,
};
/* Get SFDP data */
return memc_flexspi_transfer(&dev_data->controller, &transfer);
}
#if defined(CONFIG_FLASH_JESD216_API)
static int flash_flexspi_nor_sfdp_read(const struct device *dev,
off_t offset, void *data, size_t len)
{
struct flash_flexspi_nor_data *dev_data = dev->data;
return flash_flexspi_nor_sfdp_read_helper(dev_data, offset, data, len);
}
#endif
/* Checks JEDEC ID of flash. If supported, installs custom LUT table */
static int flash_flexspi_nor_check_jedec(struct flash_flexspi_nor_data *data,
uint32_t (*flexspi_lut)[MEMC_FLEXSPI_CMD_PER_SEQ])
{
int ret;
uint32_t vendor_id;
ret = flash_flexspi_nor_read_id_helper(data, (uint8_t *)&vendor_id);
if (ret < 0) {
return ret;
}
/* Switch on manufacturer and vendor ID */
switch (vendor_id & 0xFFFF) {
case 0x25C2:
/* MX25 flash, use 4 byte read/write */
flexspi_lut[READ][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_4READ_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
/* Flash needs 10 dummy cycles */
flexspi_lut[READ][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_4PAD, 10,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_4PAD, 0x04);
/* Only 1S-4S-4S page program supported */
flexspi_lut[PAGE_PROGRAM][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_PP_1_4_4_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_4PAD, 32);
flexspi_lut[PAGE_PROGRAM][1] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_4PAD, 0x4,
kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0);
/* Update ERASE commands for 4 byte mode */
flexspi_lut[ERASE_SECTOR][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_SE_4B,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32);
flexspi_lut[ERASE_BLOCK][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0xDC,
kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 32),
/* Read instruction used for polling is 0x05 */
data->legacy_poll = true;
flexspi_lut[READ_STATUS_REG][0] = FLEXSPI_LUT_SEQ(
kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, SPI_NOR_CMD_RDSR,
kFLEXSPI_Command_READ_SDR, kFLEXSPI_1PAD, 0x01);
/* Device uses bit 6 of status reg 1 for QE */
return flash_flexspi_nor_quad_enable(data, flexspi_lut, JESD216_DW15_QER_VAL_S1B6);
default:
return -ENOTSUP;
}
}
/* Probe parameters from flash SFDP header, and use them to configure the FlexSPI */
static int flash_flexspi_nor_probe(struct flash_flexspi_nor_data *data)
{
uint32_t flexspi_lut[FLEXSPI_INSTR_END][MEMC_FLEXSPI_CMD_PER_SEQ] = {0};
/* JESD216B defines up to 23 basic flash parameters */
uint32_t param_buf[23];
/* Space to store SFDP header and first parameter header */
uint8_t sfdp_buf[JESD216_SFDP_SIZE(1)] __aligned(4);
struct jesd216_bfp *bfp = (struct jesd216_bfp *)param_buf;
struct jesd216_sfdp_header *header = (struct jesd216_sfdp_header *)sfdp_buf;
int ret;
unsigned int key = 0U;
flexspi_device_config_t config = {
.flexspiRootClk = MHZ(50),
.flashSize = FLEXSPI_FLSHCR0_FLSHSZ_MASK, /* Max flash size */
.ARDSeqNumber = 1,
.ARDSeqIndex = READ,
};
if (memc_flexspi_is_running_xip(&data->controller)) {
/*
* ==== ENTER CRITICAL SECTION ====
* No flash access should be performed in critical section. All
* code and data accessed must reside in ram.
*/
key = irq_lock();
memc_flexspi_wait_bus_idle(&data->controller);
}
/* SFDP spec requires that we downclock the FlexSPI to 50MHz or less */
ret = memc_flexspi_update_clock(&data->controller, &config,
data->port, MHZ(50));
if (ret < 0) {
goto _exit;
}
/* Setup initial LUT table and FlexSPI configuration */
memcpy(flexspi_lut, flash_flexspi_nor_base_lut, sizeof(flash_flexspi_nor_base_lut));
ret = memc_flexspi_set_device_config(&data->controller, &config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
goto _exit;
}
/* First, check if the JEDEC ID of this flash has explicit support
* in this driver
*/
ret = flash_flexspi_nor_check_jedec(data, flexspi_lut);
if (ret == 0) {
/* Flash was supported, SFDP probe not needed */
goto _program_lut;
}
ret = flash_flexspi_nor_sfdp_read_helper(data, 0, sfdp_buf, sizeof(sfdp_buf));
if (ret < 0) {
goto _exit;
}
LOG_DBG("SFDP header magic: 0x%x", header->magic);
if (jesd216_sfdp_magic(header) != JESD216_SFDP_MAGIC) {
/* Header was read incorrectly */
LOG_WRN("Invalid header, using legacy SPI mode");
data->legacy_poll = true;
goto _program_lut;
}
if (header->phdr[0].len_dw > ARRAY_SIZE(param_buf)) {
/* Not enough space to read parameter table */
ret = -ENOBUFS;
goto _exit;
}
/* Read basic flash parameter table */
ret = flash_flexspi_nor_sfdp_read_helper(data,
jesd216_param_addr(&header->phdr[0]),
param_buf,
sizeof(uint32_t) * header->phdr[0].len_dw);
if (ret < 0) {
goto _exit;
}
/* Configure flash */
ret = flash_flexspi_nor_config_flash(data, header, bfp, flexspi_lut);
if (ret < 0) {
goto _exit;
}
_program_lut:
/*
* Update the FlexSPI with the config structure provided
* from devicetree and the configured LUT
*/
ret = memc_flexspi_set_device_config(&data->controller, &data->config,
(uint32_t *)flexspi_lut,
FLEXSPI_INSTR_PROG_END * MEMC_FLEXSPI_CMD_PER_SEQ,
data->port);
if (ret < 0) {
return ret;
}
_exit:
memc_flexspi_reset(&data->controller);
if (memc_flexspi_is_running_xip(&data->controller)) {
/* ==== EXIT CRITICAL SECTION ==== */
irq_unlock(key);
}
return ret;
}
static int flash_flexspi_nor_init(const struct device *dev)
{
const struct flash_flexspi_nor_config *config = dev->config;
struct flash_flexspi_nor_data *data = dev->data;
uint32_t vendor_id;
/* First step- use ROM pointer to controller device to create
* a copy of the device structure in RAM we can use while in
* critical sections of code.
*/
memcpy(&data->controller, config->controller, sizeof(struct device));
if (!device_is_ready(&data->controller)) {
LOG_ERR("Controller device is not ready");
return -ENODEV;
}
if (flash_flexspi_nor_probe(data)) {
if (memc_flexspi_is_running_xip(&data->controller)) {
/* We can't continue from here- the LUT stored in
* the FlexSPI will be invalid so we cannot XIP.
* Instead, spin here
*/
while (1) {
/* Spin */
}
}
LOG_ERR("SFDP probe failed");
return -EIO;
}
/* Set the FlexSPI to full clock speed */
if (memc_flexspi_update_clock(&data->controller, &data->config,
data->port, data->config.flexspiRootClk)) {
LOG_ERR("Could not set flexspi clock speed");
return -ENOTSUP;
}
memc_flexspi_reset(&data->controller);
if (flash_flexspi_nor_read_id(dev, (uint8_t *)&vendor_id)) {
LOG_ERR("Could not read vendor id");
return -EIO;
}
LOG_DBG("Vendor id: 0x%0x", vendor_id);
return 0;
}
static const struct flash_driver_api flash_flexspi_nor_api = {
.erase = flash_flexspi_nor_erase,
.write = flash_flexspi_nor_write,
.read = flash_flexspi_nor_read,
.get_parameters = flash_flexspi_nor_get_parameters,
#if defined(CONFIG_FLASH_PAGE_LAYOUT)
.page_layout = flash_flexspi_nor_pages_layout,
#endif
#if defined(CONFIG_FLASH_JESD216_API)
.sfdp_read = flash_flexspi_nor_sfdp_read,
.read_jedec_id = flash_flexspi_nor_read_id,
#endif
};
#define CONCAT3(x, y, z) x ## y ## z
#define CS_INTERVAL_UNIT(unit) \
CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle)
#define AHB_WRITE_WAIT_UNIT(unit) \
CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle)
#define FLASH_FLEXSPI_DEVICE_CONFIG(n) \
{ \
.flexspiRootClk = DT_INST_PROP(n, spi_max_frequency), \
.flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \
.CSIntervalUnit = \
CS_INTERVAL_UNIT( \
DT_INST_PROP(n, cs_interval_unit)), \
.CSInterval = DT_INST_PROP(n, cs_interval), \
.CSHoldTime = DT_INST_PROP(n, cs_hold_time), \
.CSSetupTime = DT_INST_PROP(n, cs_setup_time), \
.dataValidTime = DT_INST_PROP(n, data_valid_time), \
.columnspace = DT_INST_PROP(n, column_space), \
.enableWordAddress = DT_INST_PROP(n, word_addressable), \
.AWRSeqIndex = 0, \
.AWRSeqNumber = 0, \
.ARDSeqIndex = READ, \
.ARDSeqNumber = 1, \
.AHBWriteWaitUnit = \
AHB_WRITE_WAIT_UNIT( \
DT_INST_PROP(n, ahb_write_wait_unit)), \
.AHBWriteWaitInterval = \
DT_INST_PROP(n, ahb_write_wait_interval), \
} \
#define FLASH_FLEXSPI_NOR(n) \
static const struct flash_flexspi_nor_config \
flash_flexspi_nor_config_##n = { \
.controller = DEVICE_DT_GET(DT_INST_BUS(n)), \
}; \
static struct flash_flexspi_nor_data \
flash_flexspi_nor_data_##n = { \
.config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \
.port = DT_INST_REG_ADDR(n), \
.layout = { \
.pages_count = DT_INST_PROP(n, size) / 8 \
/ SPI_NOR_SECTOR_SIZE, \
.pages_size = SPI_NOR_SECTOR_SIZE, \
}, \
.flash_parameters = { \
.write_block_size = NOR_WRITE_SIZE, \
.erase_value = NOR_ERASE_VALUE, \
}, \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
flash_flexspi_nor_init, \
NULL, \
&flash_flexspi_nor_data_##n, \
&flash_flexspi_nor_config_##n, \
POST_KERNEL, \
CONFIG_FLASH_INIT_PRIORITY, \
&flash_flexspi_nor_api);
DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_NOR)