zephyr/drivers/can/can_xmc4xxx.c

940 lines
27 KiB
C

/*
* Copyright (c) 2023 Andriy Gelman
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT infineon_xmc4xxx_can_node
#include <zephyr/device.h>
#include <zephyr/drivers/can.h>
#include <zephyr/drivers/can/transceiver.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/bitarray.h>
#include <soc.h>
#include <xmc_can.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(can_xmc4xxx, CONFIG_CAN_LOG_LEVEL);
#define CAN_XMC4XXX_MULTICAN_NODE DT_INST(0, infineon_xmc4xxx_can)
#define CAN_XMC4XXX_NUM_MESSAGE_OBJECTS DT_PROP(CAN_XMC4XXX_MULTICAN_NODE, message_objects)
#define CAN_XMC4XXX_CLOCK_PRESCALER DT_PROP(CAN_XMC4XXX_MULTICAN_NODE, clock_prescaler)
static CAN_GLOBAL_TypeDef *const can_xmc4xxx_global_reg =
(CAN_GLOBAL_TypeDef *)DT_REG_ADDR(CAN_XMC4XXX_MULTICAN_NODE);
static bool can_xmc4xxx_global_init;
static uint32_t can_xmc4xxx_clock_frequency;
SYS_BITARRAY_DEFINE_STATIC(mo_usage_bitarray, CAN_XMC4XXX_NUM_MESSAGE_OBJECTS);
static int can_xmc4xxx_num_free_mo = CAN_XMC4XXX_NUM_MESSAGE_OBJECTS;
#define CAN_XMC4XXX_IRQ_MIN 76
#define CAN_XMC4XXX_MAX_DLC 8
#define CAN_XMC4XXX_REG_TO_NODE_IND(reg) (((uint32_t)(reg) - (uint32_t)CAN_NODE0_BASE) / 0x100)
struct can_xmc4xxx_tx_callback {
can_tx_callback_t function;
void *user_data;
};
struct can_xmc4xxx_rx_callback {
can_rx_callback_t function;
void *user_data;
};
struct can_xmc4xxx_rx_fifo {
CAN_MO_TypeDef *base;
CAN_MO_TypeDef *top;
CAN_MO_TypeDef *tail;
CAN_MO_TypeDef *head;
};
struct can_xmc4xxx_data {
struct can_driver_data common;
enum can_state state;
struct k_mutex mutex;
struct k_sem tx_sem;
struct can_xmc4xxx_tx_callback tx_callbacks[CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE];
uint32_t filter_usage;
struct can_xmc4xxx_rx_callback rx_callbacks[CONFIG_CAN_MAX_FILTER];
struct can_xmc4xxx_rx_fifo rx_fifos[CONFIG_CAN_MAX_FILTER];
#if defined(CONFIG_CAN_ACCEPT_RTR)
struct can_xmc4xxx_rx_fifo rtr_fifos[CONFIG_CAN_MAX_FILTER];
#endif
CAN_MO_TypeDef *tx_mo[CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE];
};
struct can_xmc4xxx_config {
struct can_driver_config common;
CAN_NODE_TypeDef *can;
bool clock_div8;
uint8_t service_request;
void (*irq_config_func)(void);
uint8_t input_src;
const struct pinctrl_dev_config *pcfg;
};
static int can_xmc4xxx_set_mode(const struct device *dev, can_mode_t mode)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
if (dev_data->common.started) {
return -EBUSY;
}
if ((mode & (CAN_MODE_3_SAMPLES | CAN_MODE_ONE_SHOT |
CAN_MODE_LOOPBACK | CAN_MODE_FD)) != 0) {
return -ENOTSUP;
}
if ((mode & CAN_MODE_LISTENONLY) != 0) {
XMC_CAN_NODE_SetAnalyzerMode(dev_cfg->can);
} else {
XMC_CAN_NODE_ReSetAnalyzerMode(dev_cfg->can);
}
dev_data->common.mode = mode;
return 0;
}
static int can_xmc4xxx_set_timing(const struct device *dev, const struct can_timing *timing)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
uint32_t reg;
if (!timing) {
return -EINVAL;
}
if (dev_data->common.started) {
return -EBUSY;
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
reg = FIELD_PREP(CAN_NODE_NBTR_DIV8_Msk, dev_cfg->clock_div8);
reg |= FIELD_PREP(CAN_NODE_NBTR_BRP_Msk, timing->prescaler - 1);
reg |= FIELD_PREP(CAN_NODE_NBTR_TSEG1_Msk, timing->prop_seg + timing->phase_seg1 - 1);
reg |= FIELD_PREP(CAN_NODE_NBTR_TSEG2_Msk, timing->phase_seg2 - 1);
reg |= FIELD_PREP(CAN_NODE_NBTR_SJW_Msk, timing->sjw - 1);
dev_cfg->can->NBTR = reg;
k_mutex_unlock(&dev_data->mutex);
return 0;
}
static int can_xmc4xxx_send(const struct device *dev, const struct can_frame *msg,
k_timeout_t timeout, can_tx_callback_t callback, void *callback_arg)
{
struct can_xmc4xxx_data *dev_data = dev->data;
uint8_t mailbox_idx;
struct can_xmc4xxx_tx_callback *callbacks = &dev_data->tx_callbacks[0];
CAN_MO_TypeDef *mo;
unsigned int key;
LOG_DBG("Sending %d bytes. Id: 0x%x, ID type: %s %s %s %s", can_dlc_to_bytes(msg->dlc),
msg->id, msg->flags & CAN_FRAME_IDE ? "extended" : "standard",
msg->flags & CAN_FRAME_RTR ? "RTR" : "",
msg->flags & CAN_FRAME_FDF ? "FD frame" : "",
msg->flags & CAN_FRAME_BRS ? "BRS" : "");
if (msg->dlc > CAN_XMC4XXX_MAX_DLC) {
return -EINVAL;
}
if (!dev_data->common.started) {
return -ENETDOWN;
}
if (dev_data->state == CAN_STATE_BUS_OFF) {
return -ENETUNREACH;
}
if ((msg->flags & (CAN_FRAME_FDF | CAN_FRAME_BRS)) != 0) {
return -ENOTSUP;
}
if (k_sem_take(&dev_data->tx_sem, timeout) != 0) {
return -EAGAIN;
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
for (mailbox_idx = 0; mailbox_idx < CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE; mailbox_idx++) {
if (callbacks[mailbox_idx].function == NULL) {
break;
}
}
__ASSERT_NO_MSG(mailbox_idx < CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE);
key = irq_lock();
/* critical section in case can_xmc4xxx_reset_tx_fifos() called in isr */
/* so that callback function and callback_arg are consistent */
callbacks[mailbox_idx].function = callback;
callbacks[mailbox_idx].user_data = callback_arg;
irq_unlock(key);
mo = dev_data->tx_mo[mailbox_idx];
mo->MOCTR = CAN_MO_MOCTR_RESMSGVAL_Msk;
if ((msg->flags & CAN_FRAME_IDE) != 0) {
/* MOAR - message object arbitration register */
mo->MOAR = FIELD_PREP(CAN_MO_MOAR_PRI_Msk, 1) |
FIELD_PREP(CAN_MO_MOAR_ID_Msk, msg->id) | CAN_MO_MOAR_IDE_Msk;
} else {
mo->MOAR = FIELD_PREP(CAN_MO_MOAR_PRI_Msk, 1) |
FIELD_PREP(XMC_CAN_MO_MOAR_STDID_Msk, msg->id);
}
mo->MOFCR &= ~CAN_MO_MOFCR_DLC_Msk;
mo->MOFCR |= FIELD_PREP(CAN_MO_MOFCR_DLC_Msk, msg->dlc);
if ((msg->flags & CAN_FRAME_RTR) != 0) {
mo->MOCTR = CAN_MO_MOCTR_RESDIR_Msk;
} else {
mo->MOCTR = CAN_MO_MOCTR_SETDIR_Msk;
memcpy((void *)&mo->MODATAL, &msg->data[0], sizeof(uint32_t));
memcpy((void *)&mo->MODATAH, &msg->data[4], sizeof(uint32_t));
}
mo->MOCTR = CAN_MO_MOCTR_SETTXEN0_Msk | CAN_MO_MOCTR_SETTXEN1_Msk |
CAN_MO_MOCTR_SETMSGVAL_Msk | CAN_MO_MOCTR_RESRXEN_Msk |
CAN_MO_MOCTR_RESRTSEL_Msk;
mo->MOCTR = CAN_MO_MOCTR_SETTXRQ_Msk;
k_mutex_unlock(&dev_data->mutex);
return 0;
}
static CAN_MO_TypeDef *can_xmc4xxx_get_mo(uint8_t *mo_index)
{
int i;
for (i = 0; i < CAN_XMC4XXX_NUM_MESSAGE_OBJECTS; i++) {
int prev_val;
sys_bitarray_test_and_set_bit(&mo_usage_bitarray, i, &prev_val);
if (prev_val == 0) {
*mo_index = i;
can_xmc4xxx_num_free_mo--;
return &CAN_MO->MO[i];
}
}
return NULL;
}
static void can_xmc4xxx_deinit_fifo(const struct device *dev, struct can_xmc4xxx_rx_fifo *fifo)
{
CAN_MO_TypeDef *mo = fifo->base;
while (mo != NULL) {
int next_index;
int index;
/* invalidate message */
mo->MOCTR = CAN_MO_MOCTR_RESMSGVAL_Msk;
next_index = FIELD_GET(CAN_MO_MOSTAT_PNEXT_Msk, mo->MOSTAT);
index = ((uint32_t)mo - (uint32_t)&CAN_MO->MO[0]) / sizeof(*mo);
if ((uint32_t)mo == (uint32_t)fifo->top) {
mo = NULL;
} else {
mo = &CAN_MO->MO[next_index];
}
/* we need to move the node back to the list of unallocated message objects, */
/* which is list index = 0. 255 gets rolled over to 0 in the function below */
XMC_CAN_AllocateMOtoNodeList(can_xmc4xxx_global_reg, 255, index);
sys_bitarray_clear_bit(&mo_usage_bitarray, index);
can_xmc4xxx_num_free_mo++;
}
}
static int can_xmc4xxx_init_fifo(const struct device *dev, const struct can_filter *filter,
struct can_xmc4xxx_rx_fifo *fifo, bool is_rtr)
{
const struct can_xmc4xxx_config *dev_cfg = dev->config;
CAN_MO_TypeDef *mo;
uint32_t reg;
uint8_t mo_index = 0, base_index;
if (can_xmc4xxx_num_free_mo < CONFIG_CAN_XMC4XXX_RX_FIFO_ITEMS) {
return -ENOMEM;
}
mo = can_xmc4xxx_get_mo(&mo_index);
__ASSERT_NO_MSG(mo != NULL);
base_index = mo_index;
fifo->base = mo;
fifo->tail = mo;
XMC_CAN_AllocateMOtoNodeList(can_xmc4xxx_global_reg,
CAN_XMC4XXX_REG_TO_NODE_IND(dev_cfg->can), mo_index);
/* setup the base object - this controls the filtering for the fifo */
mo->MOCTR = CAN_MO_MOCTR_RESMSGVAL_Msk;
mo->MOAMR &= ~(CAN_MO_MOAMR_AM_Msk | CAN_MO_MOAMR_MIDE_Msk);
mo->MOAR = 0;
if ((filter->flags & CAN_FILTER_IDE) != 0) {
mo->MOAMR |= FIELD_PREP(CAN_MO_MOAMR_AM_Msk, filter->mask) | CAN_MO_MOAMR_MIDE_Msk;
mo->MOAR |= FIELD_PREP(CAN_MO_MOAR_ID_Msk, filter->id) | CAN_MO_MOAR_IDE_Msk;
} else {
mo->MOAMR |= FIELD_PREP(XMC_CAN_MO_MOAR_STDID_Msk, filter->mask);
mo->MOAR |= FIELD_PREP(XMC_CAN_MO_MOAR_STDID_Msk, filter->id);
}
mo->MOFCR = FIELD_PREP(CAN_MO_MOFCR_MMC_Msk, 1) | CAN_MO_MOFCR_RXIE_Msk;
if (is_rtr) {
mo->MOFCR |= CAN_MO_MOFCR_RMM_Msk;
mo->MOCTR = CAN_MO_MOCTR_SETDIR_Msk;
} else {
mo->MOCTR = CAN_MO_MOCTR_RESDIR_Msk;
}
/* Writing to MOCTR sets or resets message object properties */
mo->MOCTR = CAN_MO_MOCTR_RESTXEN0_Msk | CAN_MO_MOCTR_RESTXEN1_Msk |
CAN_MO_MOCTR_SETMSGVAL_Msk | CAN_MO_MOCTR_SETRXEN_Msk |
CAN_MO_MOCTR_RESRTSEL_Msk;
mo->MOIPR = FIELD_PREP(CAN_MO_MOIPR_RXINP_Msk, dev_cfg->service_request);
/* setup the remaining message objects in the fifo */
for (int i = 1; i < CONFIG_CAN_XMC4XXX_RX_FIFO_ITEMS; i++) {
mo = can_xmc4xxx_get_mo(&mo_index);
__ASSERT_NO_MSG(mo != NULL);
XMC_CAN_AllocateMOtoNodeList(can_xmc4xxx_global_reg,
CAN_XMC4XXX_REG_TO_NODE_IND(dev_cfg->can), mo_index);
mo->MOCTR = CAN_MO_MOCTR_RESMSGVAL_Msk;
mo->MOCTR = CAN_MO_MOCTR_SETMSGVAL_Msk | CAN_MO_MOCTR_RESRXEN_Msk;
/* all the other message objects in the fifo must point to the base object */
mo->MOFGPR = FIELD_PREP(CAN_MO_MOFGPR_CUR_Msk, base_index);
}
reg = 0;
reg |= FIELD_PREP(CAN_MO_MOFGPR_CUR_Msk, base_index);
reg |= FIELD_PREP(CAN_MO_MOFGPR_TOP_Msk, mo_index);
reg |= FIELD_PREP(CAN_MO_MOFGPR_BOT_Msk, base_index);
reg |= FIELD_PREP(CAN_MO_MOFGPR_SEL_Msk, base_index);
fifo->base->MOFGPR = reg;
fifo->top = mo;
return 0;
}
static int can_xmc4xxx_add_rx_filter(const struct device *dev, can_rx_callback_t callback,
void *user_data, const struct can_filter *filter)
{
struct can_xmc4xxx_data *dev_data = dev->data;
int filter_idx;
if ((filter->flags & ~CAN_FILTER_IDE) != 0) {
LOG_ERR("Unsupported CAN filter flags 0x%02x", filter->flags);
return -ENOTSUP;
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
for (filter_idx = 0; filter_idx < CONFIG_CAN_MAX_FILTER; filter_idx++) {
if ((BIT(filter_idx) & dev_data->filter_usage) == 0) {
break;
}
}
if (filter_idx >= CONFIG_CAN_MAX_FILTER) {
filter_idx = -ENOSPC;
} else {
unsigned int key = irq_lock();
int ret;
ret = can_xmc4xxx_init_fifo(dev, filter, &dev_data->rx_fifos[filter_idx], false);
if (ret < 0) {
irq_unlock(key);
k_mutex_unlock(&dev_data->mutex);
return ret;
}
#if defined(CONFIG_CAN_ACCEPT_RTR)
ret = can_xmc4xxx_init_fifo(dev, filter, &dev_data->rtr_fifos[filter_idx], true);
if (ret < 0) {
can_xmc4xxx_deinit_fifo(dev, &dev_data->rx_fifos[filter_idx]);
irq_unlock(key);
k_mutex_unlock(&dev_data->mutex);
return ret;
}
#endif
dev_data->filter_usage |= BIT(filter_idx);
dev_data->rx_callbacks[filter_idx].function = callback;
dev_data->rx_callbacks[filter_idx].user_data = user_data;
irq_unlock(key);
}
k_mutex_unlock(&dev_data->mutex);
return filter_idx;
}
static void can_xmc4xxx_remove_rx_filter(const struct device *dev, int filter_idx)
{
struct can_xmc4xxx_data *dev_data = dev->data;
unsigned int key;
if (filter_idx < 0 || filter_idx >= CONFIG_CAN_MAX_FILTER) {
LOG_ERR("Filter ID %d out of bounds", filter_idx);
return;
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
if ((dev_data->filter_usage & BIT(filter_idx)) == 0) {
k_mutex_unlock(&dev_data->mutex);
return;
}
key = irq_lock();
can_xmc4xxx_deinit_fifo(dev, &dev_data->rx_fifos[filter_idx]);
#if defined(CONFIG_CAN_ACCEPT_RTR)
can_xmc4xxx_deinit_fifo(dev, &dev_data->rtr_fifos[filter_idx]);
#endif
dev_data->filter_usage &= ~BIT(filter_idx);
dev_data->rx_callbacks[filter_idx].function = NULL;
dev_data->rx_callbacks[filter_idx].user_data = NULL;
irq_unlock(key);
k_mutex_unlock(&dev_data->mutex);
}
static void can_xmc4xxx_set_state_change_callback(const struct device *dev,
can_state_change_callback_t cb, void *user_data)
{
struct can_xmc4xxx_data *dev_data = dev->data;
unsigned int key;
key = irq_lock();
/* critical section so that state_change_cb and state_change_cb_data are consistent */
dev_data->common.state_change_cb = cb;
dev_data->common.state_change_cb_user_data = user_data;
irq_unlock(key);
}
static void can_xmc4xxx_get_state_from_status(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt, uint32_t *status)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
uint8_t tec = XMC_CAN_NODE_GetTransmitErrorCounter(dev_cfg->can);
uint8_t rec = XMC_CAN_NODE_GetTransmitErrorCounter(dev_cfg->can);
if (err_cnt != NULL) {
err_cnt->tx_err_cnt = tec;
err_cnt->rx_err_cnt = rec;
}
if (state == NULL) {
return;
}
if (!dev_data->common.started) {
*state = CAN_STATE_STOPPED;
return;
}
if ((*status & XMC_CAN_NODE_STATUS_BUS_OFF) != 0) {
*state = CAN_STATE_BUS_OFF;
} else if (tec >= 128 || rec >= 128) {
*state = CAN_STATE_ERROR_PASSIVE;
} else if ((*status & XMC_CAN_NODE_STATUS_ERROR_WARNING_STATUS) != 0) {
*state = CAN_STATE_ERROR_WARNING;
} else {
*state = CAN_STATE_ERROR_ACTIVE;
}
}
static int can_xmc4xxx_get_state(const struct device *dev, enum can_state *state,
struct can_bus_err_cnt *err_cnt)
{
const struct can_xmc4xxx_config *dev_cfg = dev->config;
uint32_t status;
status = XMC_CAN_NODE_GetStatus(dev_cfg->can);
can_xmc4xxx_get_state_from_status(dev, state, err_cnt, &status);
return 0;
}
static int can_xmc4xxx_get_core_clock(const struct device *dev, uint32_t *rate)
{
const struct can_xmc4xxx_config *dev_cfg = dev->config;
*rate = can_xmc4xxx_clock_frequency;
if (dev_cfg->clock_div8) {
*rate /= 8;
}
return 0;
}
static int can_xmc4xxx_get_max_filters(const struct device *dev, bool ide)
{
ARG_UNUSED(ide);
return CONFIG_CAN_MAX_FILTER;
}
static void can_xmc4xxx_reset_tx_fifos(const struct device *dev, int status)
{
struct can_xmc4xxx_data *dev_data = dev->data;
struct can_xmc4xxx_tx_callback *tx_callbacks = &dev_data->tx_callbacks[0];
LOG_DBG("All Tx message objects reset");
for (int i = 0; i < CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE; i++) {
can_tx_callback_t callback;
void *user_data;
callback = tx_callbacks[i].function;
user_data = tx_callbacks[i].user_data;
tx_callbacks[i].function = NULL;
if (callback) {
dev_data->tx_mo[i]->MOCTR = CAN_MO_MOCTR_RESMSGVAL_Msk;
callback(dev, status, user_data);
k_sem_give(&dev_data->tx_sem);
}
}
}
static void can_xmc4xxx_tx_handler(const struct device *dev)
{
struct can_xmc4xxx_data *dev_data = dev->data;
struct can_xmc4xxx_tx_callback *tx_callbacks = &dev_data->tx_callbacks[0];
for (int i = 0; i < CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE; i++) {
CAN_MO_TypeDef *mo = dev_data->tx_mo[i];
if ((mo->MOSTAT & XMC_CAN_MO_STATUS_TX_PENDING) != 0) {
can_tx_callback_t callback;
void *user_data;
mo->MOCTR = XMC_CAN_MO_RESET_STATUS_TX_PENDING;
callback = tx_callbacks[i].function;
user_data = tx_callbacks[i].user_data;
tx_callbacks[i].function = NULL;
if (callback) {
callback(dev, 0, user_data);
k_sem_give(&dev_data->tx_sem);
}
}
}
}
static inline void can_xmc4xxx_increment_fifo_tail(struct can_xmc4xxx_rx_fifo *fifo)
{
uint8_t next_index;
if ((uint32_t)fifo->tail == (uint32_t)fifo->top) {
fifo->tail = fifo->base;
return;
}
next_index = FIELD_GET(CAN_MO_MOSTAT_PNEXT_Msk, fifo->tail->MOSTAT);
fifo->tail = &CAN_MO->MO[next_index];
}
static inline bool can_xmc4xxx_is_fifo_empty(struct can_xmc4xxx_rx_fifo *fifo)
{
if (fifo->tail->MOSTAT & XMC_CAN_MO_STATUS_RX_PENDING) {
return false;
}
return true;
}
static inline void can_xmc4xxx_update_fifo_head(struct can_xmc4xxx_rx_fifo *fifo)
{
uint32_t reg = fifo->base->MOFGPR;
uint8_t top_index, bot_index, cur_index;
uint8_t head_index = FIELD_GET(CAN_MO_MOFGPR_CUR_Msk, reg);
fifo->head = &CAN_MO->MO[head_index];
top_index = FIELD_GET(CAN_MO_MOFGPR_TOP_Msk, reg);
bot_index = FIELD_GET(CAN_MO_MOFGPR_BOT_Msk, reg);
cur_index = FIELD_GET(CAN_MO_MOFGPR_CUR_Msk, reg);
LOG_DBG("Fifo: top %d, bot %d, cur %d", top_index, bot_index, cur_index);
}
static void can_xmc4xxx_rx_fifo_handler(const struct device *dev, struct can_xmc4xxx_rx_fifo *fifo,
struct can_xmc4xxx_rx_callback *rx_callback)
{
bool is_rtr = (fifo->base->MOSTAT & CAN_MO_MOSTAT_DIR_Msk) != 0;
while (!can_xmc4xxx_is_fifo_empty(fifo)) {
struct can_frame frame;
CAN_MO_TypeDef *mo_tail = fifo->tail;
memset(&frame, 0, sizeof(frame));
if ((mo_tail->MOAR & CAN_MO_MOAR_IDE_Msk) != 0) {
frame.flags |= CAN_FRAME_IDE;
frame.id = FIELD_GET(CAN_MO_MOAR_ID_Msk, mo_tail->MOAR);
} else {
frame.id = FIELD_GET(XMC_CAN_MO_MOAR_STDID_Msk, mo_tail->MOAR);
}
frame.dlc = FIELD_GET(CAN_MO_MOFCR_DLC_Msk, mo_tail->MOFCR);
if (!is_rtr) {
memcpy(&frame.data[0], (void *)&mo_tail->MODATAL, sizeof(uint32_t));
memcpy(&frame.data[4], (void *)&mo_tail->MODATAH, sizeof(uint32_t));
} else {
frame.flags |= CAN_FRAME_RTR;
memset(&frame.data[0], 0, CAN_MAX_DLEN);
}
if (rx_callback->function != NULL) {
rx_callback->function(dev, &frame, rx_callback->user_data);
}
/* reset the rx pending bit on the tail */
mo_tail->MOCTR = XMC_CAN_MO_RESET_STATUS_RX_PENDING;
can_xmc4xxx_increment_fifo_tail(fifo);
}
}
static void can_xmc4xxx_rx_handler(const struct device *dev)
{
struct can_xmc4xxx_data *dev_data = dev->data;
for (int i = 0; i < CONFIG_CAN_MAX_FILTER; i++) {
if ((BIT(i) & dev_data->filter_usage) == 0) {
continue;
}
can_xmc4xxx_update_fifo_head(&dev_data->rx_fifos[i]);
can_xmc4xxx_rx_fifo_handler(dev, &dev_data->rx_fifos[i],
&dev_data->rx_callbacks[i]);
#if defined(CONFIG_CAN_ACCEPT_RTR)
can_xmc4xxx_update_fifo_head(&dev_data->rtr_fifos[i]);
can_xmc4xxx_rx_fifo_handler(dev, &dev_data->rtr_fifos[i],
&dev_data->rx_callbacks[i]);
#endif
}
}
static void can_xmc4xxx_state_change_handler(const struct device *dev, uint32_t status)
{
const struct can_xmc4xxx_config *dev_cfg = dev->config;
struct can_xmc4xxx_data *dev_data = dev->data;
enum can_state new_state;
struct can_bus_err_cnt err_cnt;
can_xmc4xxx_get_state_from_status(dev, &new_state, &err_cnt, &status);
if (dev_data->state != new_state) {
if (dev_data->common.state_change_cb) {
dev_data->common.state_change_cb(
dev, new_state, err_cnt,
dev_data->common.state_change_cb_user_data);
}
if (dev_data->state != CAN_STATE_STOPPED && new_state == CAN_STATE_BUS_OFF) {
/* re-enable the node after auto bus-off recovery completes */
XMC_CAN_NODE_ResetInitBit(dev_cfg->can);
}
dev_data->state = new_state;
if (dev_data->state == CAN_STATE_BUS_OFF) {
can_xmc4xxx_reset_tx_fifos(dev, -ENETDOWN);
}
}
}
static void can_xmc4xxx_isr(const struct device *dev)
{
const struct can_xmc4xxx_config *dev_cfg = dev->config;
uint32_t status;
status = XMC_CAN_NODE_GetStatus(dev_cfg->can);
XMC_CAN_NODE_ClearStatus(dev_cfg->can, status);
if ((status & XMC_CAN_NODE_STATUS_TX_OK) != 0) {
can_xmc4xxx_tx_handler(dev);
}
if ((status & XMC_CAN_NODE_STATUS_RX_OK) != 0) {
can_xmc4xxx_rx_handler(dev);
}
if ((status & XMC_CAN_NODE_STATUS_ALERT_WARNING) != 0) {
/* change of bit NSRx.BOFF */
/* change of bit NSRx.EWRN */
can_xmc4xxx_state_change_handler(dev, status);
}
}
static int can_xmc4xxx_get_capabilities(const struct device *dev, can_mode_t *cap)
{
ARG_UNUSED(dev);
*cap = CAN_MODE_NORMAL | CAN_MODE_LISTENONLY;
return 0;
}
static int can_xmc4xxx_start(const struct device *dev)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
int ret = 0;
unsigned int key;
if (dev_data->common.started) {
return -EALREADY;
}
key = irq_lock();
can_xmc4xxx_reset_tx_fifos(dev, -ENETDOWN);
irq_unlock(key);
if (dev_cfg->common.phy != NULL) {
ret = can_transceiver_enable(dev_cfg->common.phy, dev_data->common.mode);
if (ret < 0) {
LOG_ERR("Failed to enable CAN transceiver [%d]", ret);
return ret;
}
}
k_mutex_lock(&dev_data->mutex, K_FOREVER);
XMC_CAN_NODE_DisableConfigurationChange(dev_cfg->can);
dev_data->common.started = true;
XMC_CAN_NODE_ResetInitBit(dev_cfg->can);
k_mutex_unlock(&dev_data->mutex);
return ret;
}
static int can_xmc4xxx_stop(const struct device *dev)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
int ret = 0;
unsigned int key;
if (!dev_data->common.started) {
return -EALREADY;
}
key = irq_lock();
XMC_CAN_NODE_SetInitBit(dev_cfg->can);
XMC_CAN_NODE_EnableConfigurationChange(dev_cfg->can);
can_xmc4xxx_reset_tx_fifos(dev, -ENETDOWN);
dev_data->common.started = false;
irq_unlock(key);
if (dev_cfg->common.phy != NULL) {
ret = can_transceiver_disable(dev_cfg->common.phy);
if (ret < 0) {
LOG_ERR("Failed to disable CAN transceiver [%d]", ret);
return ret;
}
}
return 0;
}
static int can_xmc4xxx_init(const struct device *dev)
{
struct can_xmc4xxx_data *dev_data = dev->data;
const struct can_xmc4xxx_config *dev_cfg = dev->config;
int ret;
struct can_timing timing = {0};
CAN_MO_TypeDef *mo;
uint8_t mo_index = 0;
k_sem_init(&dev_data->tx_sem, CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE,
CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE);
k_mutex_init(&dev_data->mutex);
if (!can_xmc4xxx_global_init) {
uint32_t fdr_step;
uint32_t clk_module;
XMC_CAN_Enable(can_xmc4xxx_global_reg);
XMC_CAN_SetBaudrateClockSource(can_xmc4xxx_global_reg, XMC_CAN_CANCLKSRC_FPERI);
clk_module = XMC_CAN_GetBaudrateClockFrequency(can_xmc4xxx_global_reg);
fdr_step = 1024 - CAN_XMC4XXX_CLOCK_PRESCALER;
can_xmc4xxx_clock_frequency = clk_module / CAN_XMC4XXX_CLOCK_PRESCALER;
LOG_DBG("Clock frequency %dHz\n", can_xmc4xxx_clock_frequency);
can_xmc4xxx_global_reg->FDR &= ~(CAN_FDR_DM_Msk | CAN_FDR_STEP_Msk);
can_xmc4xxx_global_reg->FDR |= FIELD_PREP(CAN_FDR_DM_Msk, XMC_CAN_DM_NORMAL) |
FIELD_PREP(CAN_FDR_STEP_Msk, fdr_step);
can_xmc4xxx_global_init = true;
}
XMC_CAN_NODE_EnableConfigurationChange(dev_cfg->can);
XMC_CAN_NODE_SetReceiveInput(dev_cfg->can, dev_cfg->input_src);
XMC_CAN_NODE_SetInitBit(dev_cfg->can);
XMC_CAN_NODE_SetEventNodePointer(dev_cfg->can, XMC_CAN_NODE_POINTER_EVENT_ALERT,
dev_cfg->service_request);
XMC_CAN_NODE_SetEventNodePointer(dev_cfg->can, XMC_CAN_NODE_POINTER_EVENT_LEC,
dev_cfg->service_request);
XMC_CAN_NODE_SetEventNodePointer(dev_cfg->can, XMC_CAN_NODE_POINTER_EVENT_TRANSFER_OK,
dev_cfg->service_request);
XMC_CAN_NODE_SetEventNodePointer(dev_cfg->can, XMC_CAN_NODE_POINTER_EVENT_FRAME_COUNTER,
dev_cfg->service_request);
XMC_CAN_NODE_EnableEvent(dev_cfg->can, XMC_CAN_NODE_EVENT_TX_INT |
XMC_CAN_NODE_EVENT_ALERT);
/* set up tx messages */
for (int i = 0; i < CONFIG_CAN_XMC4XXX_MAX_TX_QUEUE; i++) {
mo = can_xmc4xxx_get_mo(&mo_index);
if (mo == NULL) {
return -ENOMEM;
}
dev_data->tx_mo[i] = mo;
XMC_CAN_AllocateMOtoNodeList(can_xmc4xxx_global_reg,
CAN_XMC4XXX_REG_TO_NODE_IND(dev_cfg->can), mo_index);
mo->MOIPR = FIELD_PREP(CAN_MO_MOIPR_TXINP_Msk, dev_cfg->service_request);
mo->MOFCR = FIELD_PREP(CAN_MO_MOFCR_MMC_Msk, 0) | CAN_MO_MOFCR_TXIE_Msk;
}
#ifdef CONFIG_CAN_XMC4XXX_INTERNAL_BUS_MODE
/* The name of this function is misleading. It doesn't actually enable */
/* loopback on a single node, but connects all CAN devices to an internal bus. */
XMC_CAN_NODE_EnableLoopBack(dev_cfg->can);
#endif
dev_cfg->irq_config_func();
dev_data->state = CAN_STATE_STOPPED;
#ifndef CONFIG_CAN_XMC4XXX_INTERNAL_BUS_MODE
ret = pinctrl_apply_state(dev_cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
#endif
ret = can_calc_timing(dev, &timing, dev_cfg->common.bitrate,
dev_cfg->common.sample_point);
if (ret < 0) {
return ret;
}
LOG_DBG("Presc: %d, BS1: %d, BS2: %d", timing.prescaler, timing.phase_seg1,
timing.phase_seg2);
LOG_DBG("Sample-point err : %d", ret);
return can_set_timing(dev, &timing);
}
static const struct can_driver_api can_xmc4xxx_api_funcs = {
.get_capabilities = can_xmc4xxx_get_capabilities,
.set_mode = can_xmc4xxx_set_mode,
.set_timing = can_xmc4xxx_set_timing,
.start = can_xmc4xxx_start,
.stop = can_xmc4xxx_stop,
.send = can_xmc4xxx_send,
.add_rx_filter = can_xmc4xxx_add_rx_filter,
.remove_rx_filter = can_xmc4xxx_remove_rx_filter,
.get_state = can_xmc4xxx_get_state,
.set_state_change_callback = can_xmc4xxx_set_state_change_callback,
.get_core_clock = can_xmc4xxx_get_core_clock,
.get_max_filters = can_xmc4xxx_get_max_filters,
.timing_min = {
.sjw = 1,
.prop_seg = 0,
.phase_seg1 = 3,
.phase_seg2 = 2,
.prescaler = 1,
},
.timing_max = {
.sjw = 4,
.prop_seg = 0,
.phase_seg1 = 16,
.phase_seg2 = 8,
.prescaler = 64,
},
};
#define CAN_XMC4XXX_INIT(inst) \
static void can_xmc4xxx_irq_config_##inst(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(inst), DT_INST_IRQ(inst, priority), can_xmc4xxx_isr, \
DEVICE_DT_INST_GET(inst), 0); \
irq_enable(DT_INST_IRQN(inst)); \
} \
\
PINCTRL_DT_INST_DEFINE(inst); \
\
static struct can_xmc4xxx_data can_xmc4xxx_data_##inst; \
static const struct can_xmc4xxx_config can_xmc4xxx_config_##inst = { \
.common = CAN_DT_DRIVER_CONFIG_INST_GET(inst, 0, 1000000), \
.can = (CAN_NODE_TypeDef *)DT_INST_REG_ADDR(inst), \
.clock_div8 = DT_INST_PROP(inst, clock_div8), \
.irq_config_func = can_xmc4xxx_irq_config_##inst, \
.service_request = DT_INST_IRQN(inst) - CAN_XMC4XXX_IRQ_MIN, \
.input_src = DT_INST_ENUM_IDX(inst, input_src), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \
}; \
\
CAN_DEVICE_DT_INST_DEFINE(inst, can_xmc4xxx_init, NULL, &can_xmc4xxx_data_##inst, \
&can_xmc4xxx_config_##inst, POST_KERNEL, \
CONFIG_CAN_INIT_PRIORITY, &can_xmc4xxx_api_funcs);
DT_INST_FOREACH_STATUS_OKAY(CAN_XMC4XXX_INIT)