420 lines
11 KiB
C
420 lines
11 KiB
C
/*
|
|
* Copyright (c) 2022, Basalte bv
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#define DT_DRV_COMPAT atmel_sam_adc
|
|
|
|
#include <soc.h>
|
|
#include <zephyr/drivers/adc.h>
|
|
#include <zephyr/drivers/pinctrl.h>
|
|
#include <zephyr/drivers/clock_control/atmel_sam_pmc.h>
|
|
|
|
#define ADC_CONTEXT_USES_KERNEL_TIMER
|
|
#include "adc_context.h"
|
|
|
|
#include <zephyr/logging/log.h>
|
|
#include <zephyr/irq.h>
|
|
LOG_MODULE_REGISTER(adc_sam, CONFIG_ADC_LOG_LEVEL);
|
|
|
|
#define SAM_ADC_NUM_CHANNELS 16
|
|
#define SAM_ADC_TEMP_CHANNEL 15
|
|
|
|
struct adc_sam_config {
|
|
Adc *regs;
|
|
const struct atmel_sam_pmc_config clock_cfg;
|
|
|
|
uint8_t prescaler;
|
|
uint8_t startup_time;
|
|
uint8_t settling_time;
|
|
uint8_t tracking_time;
|
|
|
|
const struct pinctrl_dev_config *pcfg;
|
|
void (*config_func)(const struct device *dev);
|
|
};
|
|
|
|
struct adc_sam_data {
|
|
struct adc_context ctx;
|
|
const struct device *dev;
|
|
|
|
/* Pointer to the buffer in the sequence. */
|
|
uint16_t *buffer;
|
|
|
|
/* Pointer to the beginning of a sample. Consider the number of
|
|
* channels in the sequence: this buffer changes by that amount
|
|
* so all the channels would get repeated.
|
|
*/
|
|
uint16_t *repeat_buffer;
|
|
|
|
/* Number of active channels to fill buffer */
|
|
uint8_t num_active_channels;
|
|
};
|
|
|
|
static uint8_t count_bits(uint32_t val)
|
|
{
|
|
uint8_t res = 0;
|
|
|
|
while (val) {
|
|
res += val & 1U;
|
|
val >>= 1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int adc_sam_channel_setup(const struct device *dev,
|
|
const struct adc_channel_cfg *channel_cfg)
|
|
{
|
|
const struct adc_sam_config *const cfg = dev->config;
|
|
Adc *const adc = cfg->regs;
|
|
|
|
uint8_t channel_id = channel_cfg->channel_id;
|
|
|
|
if (channel_cfg->differential) {
|
|
if (channel_id != (channel_cfg->input_positive / 2U)
|
|
|| channel_id != (channel_cfg->input_negative / 2U)) {
|
|
LOG_ERR("Invalid ADC differential input for channel %u", channel_id);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (channel_id != channel_cfg->input_positive) {
|
|
LOG_ERR("Invalid ADC single-ended input for channel %u", channel_id);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
|
|
LOG_ERR("Invalid ADC channel acquisition time");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (channel_cfg->reference != ADC_REF_EXTERNAL0) {
|
|
LOG_ERR("Invalid ADC channel reference (%d)", channel_cfg->reference);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Enable internal temperature sensor (channel 15 / single-ended) */
|
|
if (channel_cfg->channel_id == SAM_ADC_TEMP_CHANNEL) {
|
|
adc->ADC_ACR |= ADC_ACR_TSON;
|
|
}
|
|
|
|
/* Set channel mode, always on both inputs */
|
|
if (channel_cfg->differential) {
|
|
adc->ADC_COR |= (ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U);
|
|
} else {
|
|
adc->ADC_COR &= ~((ADC_COR_DIFF0 | ADC_COR_DIFF1) << (channel_id * 2U));
|
|
}
|
|
|
|
/* Reset current gain */
|
|
adc->ADC_CGR &= ~(ADC_CGR_GAIN0_Msk << (channel_id * 2U));
|
|
|
|
switch (channel_cfg->gain) {
|
|
case ADC_GAIN_1_2:
|
|
if (!channel_cfg->differential) {
|
|
LOG_ERR("ADC 1/2x gain only allowed for differential channel");
|
|
return -EINVAL;
|
|
}
|
|
/* NOP */
|
|
break;
|
|
case ADC_GAIN_1:
|
|
adc->ADC_CGR |= ADC_CGR_GAIN0(1) << (channel_id * 2U);
|
|
break;
|
|
case ADC_GAIN_2:
|
|
adc->ADC_CGR |= ADC_CGR_GAIN0(2) << (channel_id * 2U);
|
|
break;
|
|
case ADC_GAIN_4:
|
|
if (channel_cfg->differential) {
|
|
LOG_ERR("ADC 4x gain only allowed for single-ended channel");
|
|
return -EINVAL;
|
|
}
|
|
adc->ADC_CGR |= ADC_CGR_GAIN0(3) << (channel_id * 2U);
|
|
break;
|
|
default:
|
|
LOG_ERR("Invalid ADC channel gain (%d)", channel_cfg->gain);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void adc_sam_start_conversion(const struct device *dev)
|
|
{
|
|
const struct adc_sam_config *const cfg = dev->config;
|
|
Adc *const adc = cfg->regs;
|
|
|
|
adc->ADC_CR = ADC_CR_START;
|
|
}
|
|
|
|
/**
|
|
* This is only called once at the beginning of all the conversions,
|
|
* all channels as a group.
|
|
*/
|
|
static void adc_context_start_sampling(struct adc_context *ctx)
|
|
{
|
|
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
|
|
const struct adc_sam_config *const cfg = data->dev->config;
|
|
Adc *const adc = cfg->regs;
|
|
|
|
data->num_active_channels = count_bits(ctx->sequence.channels);
|
|
|
|
/* Disable all */
|
|
adc->ADC_CHDR = 0xffff;
|
|
|
|
/* Enable selected */
|
|
adc->ADC_CHER = ctx->sequence.channels;
|
|
|
|
LOG_DBG("Starting conversion for %u channels", data->num_active_channels);
|
|
|
|
adc_sam_start_conversion(data->dev);
|
|
}
|
|
|
|
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat)
|
|
{
|
|
struct adc_sam_data *data = CONTAINER_OF(ctx, struct adc_sam_data, ctx);
|
|
|
|
if (repeat) {
|
|
data->buffer = data->repeat_buffer;
|
|
}
|
|
}
|
|
|
|
static int check_buffer_size(const struct adc_sequence *sequence,
|
|
uint8_t active_channels)
|
|
{
|
|
size_t needed_buffer_size = active_channels * sizeof(uint16_t);
|
|
|
|
if (sequence->options) {
|
|
needed_buffer_size *= (1 + sequence->options->extra_samplings);
|
|
}
|
|
|
|
if (sequence->buffer_size < needed_buffer_size) {
|
|
LOG_ERR("Provided buffer is too small (%u/%u)",
|
|
sequence->buffer_size, needed_buffer_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int start_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
struct adc_sam_data *data = dev->data;
|
|
uint32_t channels = sequence->channels;
|
|
int error;
|
|
|
|
/* Signal an error if the channel selection is invalid (no channels or
|
|
* a non-existing one is selected).
|
|
*/
|
|
if (channels == 0U ||
|
|
(channels & (~0UL << SAM_ADC_NUM_CHANNELS))) {
|
|
LOG_ERR("Invalid selection of channels");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sequence->oversampling != 0U) {
|
|
LOG_ERR("Oversampling is not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sequence->resolution != 12U) {
|
|
LOG_ERR("ADC resolution %d is not valid", sequence->resolution);
|
|
return -EINVAL;
|
|
}
|
|
|
|
data->num_active_channels = count_bits(channels);
|
|
|
|
error = check_buffer_size(sequence, data->num_active_channels);
|
|
if (error) {
|
|
return error;
|
|
}
|
|
|
|
data->buffer = sequence->buffer;
|
|
data->repeat_buffer = sequence->buffer;
|
|
|
|
/* At this point we allow the scheduler to do other things while
|
|
* we wait for the conversions to complete. This is provided by the
|
|
* adc_context functions. However, the caller of this function is
|
|
* blocked until the results are in.
|
|
*/
|
|
adc_context_start_read(&data->ctx, sequence);
|
|
|
|
return adc_context_wait_for_completion(&data->ctx);
|
|
}
|
|
|
|
static int adc_sam_read(const struct device *dev,
|
|
const struct adc_sequence *sequence)
|
|
{
|
|
struct adc_sam_data *data = dev->data;
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, false, NULL);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void adc_sam_isr(const struct device *dev)
|
|
{
|
|
const struct adc_sam_config *const cfg = dev->config;
|
|
struct adc_sam_data *data = dev->data;
|
|
Adc *const adc = cfg->regs;
|
|
|
|
uint16_t result;
|
|
|
|
if (adc->ADC_ISR & ADC_ISR_DRDY) {
|
|
result = adc->ADC_LCDR & ADC_LCDR_LDATA_Msk;
|
|
|
|
*data->buffer++ = result;
|
|
data->num_active_channels--;
|
|
|
|
if (data->num_active_channels == 0) {
|
|
/* Called once all conversions have completed.*/
|
|
adc_context_on_sampling_done(&data->ctx, dev);
|
|
} else {
|
|
adc_sam_start_conversion(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int adc_sam_init(const struct device *dev)
|
|
{
|
|
const struct adc_sam_config *const cfg = dev->config;
|
|
struct adc_sam_data *data = dev->data;
|
|
Adc *const adc = cfg->regs;
|
|
|
|
int ret;
|
|
uint32_t frequency, conv_periods;
|
|
|
|
/* Get peripheral clock frequency */
|
|
ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER,
|
|
(clock_control_subsys_t)&cfg->clock_cfg,
|
|
&frequency);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to get ADC peripheral clock rate (%d)", ret);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Calculate ADC clock frequency */
|
|
frequency = frequency / 2U / (cfg->prescaler + 1U);
|
|
if (frequency < 1000000U || frequency > 22000000U) {
|
|
LOG_ERR("Invalid ADC clock frequency %d (1MHz < freq < 22Mhz)", frequency);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* The number of ADC pulses for conversion */
|
|
conv_periods = MAX(20U, cfg->tracking_time + 6U);
|
|
|
|
/* Calculate the sampling frequency */
|
|
frequency /= conv_periods;
|
|
|
|
/* Reset ADC controller */
|
|
adc->ADC_CR = ADC_CR_SWRST;
|
|
|
|
/* Reset Mode */
|
|
adc->ADC_MR = 0U;
|
|
|
|
/* Reset PDC transfer */
|
|
adc->ADC_PTCR = ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS;
|
|
adc->ADC_RCR = 0U;
|
|
adc->ADC_RNCR = 0U;
|
|
|
|
/* Set prescaler, timings and allow different analog settings for each channel */
|
|
adc->ADC_MR = ADC_MR_PRESCAL(cfg->prescaler)
|
|
| ADC_MR_STARTUP(cfg->startup_time)
|
|
| ADC_MR_SETTLING(cfg->settling_time)
|
|
| ADC_MR_TRACKTIM(cfg->tracking_time)
|
|
| ADC_MR_TRANSFER(2U) /* Should be 2 to guarantee the optimal hold time. */
|
|
| ADC_MR_ANACH_ALLOWED;
|
|
|
|
/**
|
|
* Set bias current control
|
|
* IBCTL = 00 is the required value for a sampling frequency below 500 kHz,
|
|
* and IBCTL = 01 for a sampling frequency between 500 kHz and 1 MHz.
|
|
*/
|
|
adc->ADC_ACR = ADC_ACR_IBCTL(frequency < 500000U ? 0U : 1U);
|
|
|
|
/* Enable ADC clock in PMC */
|
|
ret = clock_control_on(SAM_DT_PMC_CONTROLLER,
|
|
(clock_control_subsys_t)&cfg->clock_cfg);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to enable ADC clock (%d)", ret);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
cfg->config_func(dev);
|
|
|
|
/* Enable data ready interrupt */
|
|
adc->ADC_IER = ADC_IER_DRDY;
|
|
|
|
data->dev = dev;
|
|
|
|
adc_context_unlock_unconditionally(&data->ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
static int adc_sam_read_async(const struct device *dev,
|
|
const struct adc_sequence *sequence,
|
|
struct k_poll_signal *async)
|
|
{
|
|
struct adc_sam_data *data = dev->data;
|
|
int error;
|
|
|
|
adc_context_lock(&data->ctx, true, async);
|
|
error = start_read(dev, sequence);
|
|
adc_context_release(&data->ctx, error);
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
static const struct adc_driver_api adc_sam_api = {
|
|
.channel_setup = adc_sam_channel_setup,
|
|
.read = adc_sam_read,
|
|
#ifdef CONFIG_ADC_ASYNC
|
|
.read_async = adc_sam_read_async,
|
|
#endif
|
|
};
|
|
|
|
#define ADC_SAM_DEVICE(n) \
|
|
PINCTRL_DT_INST_DEFINE(n); \
|
|
static void adc_sam_irq_config_##n(const struct device *dev) \
|
|
{ \
|
|
IRQ_CONNECT(DT_INST_IRQN(n), \
|
|
DT_INST_IRQ(n, priority), \
|
|
adc_sam_isr, \
|
|
DEVICE_DT_INST_GET(n), 0); \
|
|
irq_enable(DT_INST_IRQN(n)); \
|
|
} \
|
|
static const struct adc_sam_config adc_sam_config_##n = { \
|
|
.regs = (Adc *)DT_INST_REG_ADDR(n), \
|
|
.clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \
|
|
.prescaler = DT_INST_PROP(n, prescaler), \
|
|
.startup_time = DT_INST_ENUM_IDX(n, startup_time), \
|
|
.settling_time = DT_INST_ENUM_IDX(n, settling_time), \
|
|
.tracking_time = DT_INST_ENUM_IDX(n, tracking_time), \
|
|
.config_func = &adc_sam_irq_config_##n, \
|
|
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
|
|
}; \
|
|
static struct adc_sam_data adc_sam_data_##n = { \
|
|
ADC_CONTEXT_INIT_TIMER(adc_sam_data_##n, ctx), \
|
|
ADC_CONTEXT_INIT_LOCK(adc_sam_data_##n, ctx), \
|
|
ADC_CONTEXT_INIT_SYNC(adc_sam_data_##n, ctx), \
|
|
.dev = DEVICE_DT_INST_GET(n), \
|
|
}; \
|
|
DEVICE_DT_INST_DEFINE(n, adc_sam_init, NULL, \
|
|
&adc_sam_data_##n, \
|
|
&adc_sam_config_##n, POST_KERNEL, \
|
|
CONFIG_ADC_INIT_PRIORITY, \
|
|
&adc_sam_api);
|
|
|
|
DT_INST_FOREACH_STATUS_OKAY(ADC_SAM_DEVICE)
|