864 lines
20 KiB
C
864 lines
20 KiB
C
/*
|
|
* Copyright (c) 2021 Nordic Semiconductor ASA
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
/**
|
|
* @file udc_nrf.c
|
|
* @brief Nordic USB device controller (UDC) driver
|
|
*
|
|
* The driver implements the interface between the nRF USBD peripheral
|
|
* driver from nrfx package and UDC API.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <soc.h>
|
|
|
|
#include <zephyr/kernel.h>
|
|
#include <zephyr/drivers/usb/udc.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/drivers/clock_control/nrf_clock_control.h>
|
|
#include <zephyr/dt-bindings/regulator/nrf5x.h>
|
|
|
|
#include <nrf_usbd_common.h>
|
|
#include <hal/nrf_usbd.h>
|
|
#include <nrfx_power.h>
|
|
#include "udc_common.h"
|
|
|
|
#include <zephyr/logging/log.h>
|
|
LOG_MODULE_REGISTER(udc_nrf, CONFIG_UDC_DRIVER_LOG_LEVEL);
|
|
|
|
/*
|
|
* There is no real advantage to change control endpoint size
|
|
* but we can use it for testing UDC driver API and higher layers.
|
|
*/
|
|
#define UDC_NRF_MPS0 UDC_MPS0_64
|
|
#define UDC_NRF_EP0_SIZE 64
|
|
|
|
enum udc_nrf_event_type {
|
|
/* An event generated by the HAL driver */
|
|
UDC_NRF_EVT_HAL,
|
|
/* Shim driver event to trigger next transfer */
|
|
UDC_NRF_EVT_XFER,
|
|
/* Let controller perform status stage */
|
|
UDC_NRF_EVT_STATUS_IN,
|
|
};
|
|
|
|
struct udc_nrf_evt {
|
|
enum udc_nrf_event_type type;
|
|
union {
|
|
nrf_usbd_common_evt_t hal_evt;
|
|
uint8_t ep;
|
|
};
|
|
};
|
|
|
|
K_MSGQ_DEFINE(drv_msgq, sizeof(struct udc_nrf_evt),
|
|
CONFIG_UDC_NRF_MAX_QMESSAGES, sizeof(uint32_t));
|
|
|
|
static K_KERNEL_STACK_DEFINE(drv_stack, CONFIG_UDC_NRF_THREAD_STACK_SIZE);
|
|
static struct k_thread drv_stack_data;
|
|
|
|
/* USB device controller access from devicetree */
|
|
#define DT_DRV_COMPAT nordic_nrf_usbd
|
|
|
|
#define CFG_EPIN_CNT DT_INST_PROP(0, num_in_endpoints)
|
|
#define CFG_EPOUT_CNT DT_INST_PROP(0, num_out_endpoints)
|
|
#define CFG_EP_ISOIN_CNT DT_INST_PROP(0, num_isoin_endpoints)
|
|
#define CFG_EP_ISOOUT_CNT DT_INST_PROP(0, num_isoout_endpoints)
|
|
|
|
static struct udc_ep_config ep_cfg_out[CFG_EPOUT_CNT + CFG_EP_ISOOUT_CNT + 1];
|
|
static struct udc_ep_config ep_cfg_in[CFG_EPIN_CNT + CFG_EP_ISOIN_CNT + 1];
|
|
static bool udc_nrf_setup_rcvd;
|
|
const static struct device *udc_nrf_dev;
|
|
|
|
struct udc_nrf_config {
|
|
clock_control_subsys_t clock;
|
|
nrfx_power_config_t pwr;
|
|
nrfx_power_usbevt_config_t evt;
|
|
};
|
|
|
|
static struct onoff_manager *hfxo_mgr;
|
|
static struct onoff_client hfxo_cli;
|
|
|
|
static void udc_nrf_clear_control_out(const struct device *dev)
|
|
{
|
|
if (nrf_usbd_common_last_setup_dir_get() == USB_CONTROL_EP_OUT &&
|
|
udc_nrf_setup_rcvd) {
|
|
/* Allow data chunk on EP0 OUT */
|
|
nrf_usbd_common_setup_data_clear();
|
|
udc_nrf_setup_rcvd = false;
|
|
LOG_INF("Allow data OUT");
|
|
}
|
|
}
|
|
|
|
static void udc_event_xfer_in_next(const struct device *dev, const uint8_t ep)
|
|
{
|
|
struct net_buf *buf;
|
|
|
|
if (udc_ep_is_busy(dev, ep)) {
|
|
return;
|
|
}
|
|
|
|
buf = udc_buf_peek(dev, ep);
|
|
if (buf != NULL) {
|
|
nrf_usbd_common_transfer_t xfer = {
|
|
.p_data = {.tx = buf->data},
|
|
.size = buf->len,
|
|
.flags = udc_ep_buf_has_zlp(buf) ?
|
|
NRF_USBD_COMMON_TRANSFER_ZLP_FLAG : 0,
|
|
};
|
|
nrfx_err_t err;
|
|
|
|
err = nrf_usbd_common_ep_transfer(ep, &xfer);
|
|
if (err != NRFX_SUCCESS) {
|
|
LOG_ERR("ep 0x%02x nrfx error: %x", ep, err);
|
|
/* REVISE: remove from endpoint queue? ASSERT? */
|
|
udc_submit_ep_event(dev, buf, -ECONNREFUSED);
|
|
} else {
|
|
udc_ep_set_busy(dev, ep, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void udc_event_xfer_ctrl_in(const struct device *dev,
|
|
struct net_buf *const buf)
|
|
{
|
|
if (udc_ctrl_stage_is_status_in(dev) ||
|
|
udc_ctrl_stage_is_no_data(dev)) {
|
|
/* Status stage finished, notify upper layer */
|
|
udc_ctrl_submit_status(dev, buf);
|
|
}
|
|
|
|
if (udc_ctrl_stage_is_data_in(dev)) {
|
|
/*
|
|
* s-in-[status] finished, release buffer.
|
|
* Since the controller supports auto-status we cannot use
|
|
* if (udc_ctrl_stage_is_status_out()) after state update.
|
|
*/
|
|
net_buf_unref(buf);
|
|
}
|
|
|
|
/* Update to next stage of control transfer */
|
|
udc_ctrl_update_stage(dev, buf);
|
|
|
|
nrf_usbd_common_setup_clear();
|
|
}
|
|
|
|
static void udc_event_fake_status_in(const struct device *dev)
|
|
{
|
|
struct net_buf *buf;
|
|
|
|
buf = udc_buf_get(dev, USB_CONTROL_EP_IN);
|
|
if (unlikely(buf == NULL)) {
|
|
LOG_DBG("ep 0x%02x queue is empty", USB_CONTROL_EP_IN);
|
|
return;
|
|
}
|
|
|
|
LOG_DBG("Fake status IN %p", buf);
|
|
udc_event_xfer_ctrl_in(dev, buf);
|
|
}
|
|
|
|
static void udc_event_xfer_in(const struct device *dev,
|
|
nrf_usbd_common_evt_t const *const event)
|
|
{
|
|
uint8_t ep = event->data.eptransfer.ep;
|
|
struct net_buf *buf;
|
|
|
|
switch (event->data.eptransfer.status) {
|
|
case NRF_USBD_COMMON_EP_OK:
|
|
buf = udc_buf_get(dev, ep);
|
|
if (buf == NULL) {
|
|
LOG_ERR("ep 0x%02x queue is empty", ep);
|
|
__ASSERT_NO_MSG(false);
|
|
return;
|
|
}
|
|
|
|
udc_ep_set_busy(dev, ep, false);
|
|
if (ep == USB_CONTROL_EP_IN) {
|
|
udc_event_xfer_ctrl_in(dev, buf);
|
|
return;
|
|
}
|
|
|
|
udc_submit_ep_event(dev, buf, 0);
|
|
break;
|
|
|
|
case NRF_USBD_COMMON_EP_ABORTED:
|
|
LOG_WRN("aborted IN ep 0x%02x", ep);
|
|
buf = udc_buf_get_all(dev, ep);
|
|
|
|
if (buf == NULL) {
|
|
LOG_DBG("ep 0x%02x queue is empty", ep);
|
|
return;
|
|
}
|
|
|
|
udc_ep_set_busy(dev, ep, false);
|
|
udc_submit_ep_event(dev, buf, -ECONNABORTED);
|
|
break;
|
|
|
|
default:
|
|
LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x",
|
|
event->data.eptransfer.status, ep);
|
|
udc_submit_event(dev, UDC_EVT_ERROR, -EIO);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void udc_event_xfer_ctrl_out(const struct device *dev,
|
|
struct net_buf *const buf)
|
|
{
|
|
/*
|
|
* In case s-in-status, controller supports auto-status therefore we
|
|
* do not have to call udc_ctrl_stage_is_status_out().
|
|
*/
|
|
|
|
/* Update to next stage of control transfer */
|
|
udc_ctrl_update_stage(dev, buf);
|
|
|
|
if (udc_ctrl_stage_is_status_in(dev)) {
|
|
udc_ctrl_submit_s_out_status(dev, buf);
|
|
}
|
|
}
|
|
|
|
static void udc_event_xfer_out_next(const struct device *dev, const uint8_t ep)
|
|
{
|
|
struct net_buf *buf;
|
|
|
|
if (udc_ep_is_busy(dev, ep)) {
|
|
return;
|
|
}
|
|
|
|
buf = udc_buf_peek(dev, ep);
|
|
if (buf != NULL) {
|
|
nrf_usbd_common_transfer_t xfer = {
|
|
.p_data = {.rx = buf->data},
|
|
.size = buf->size,
|
|
.flags = 0,
|
|
};
|
|
nrfx_err_t err;
|
|
|
|
err = nrf_usbd_common_ep_transfer(ep, &xfer);
|
|
if (err != NRFX_SUCCESS) {
|
|
LOG_ERR("ep 0x%02x nrfx error: %x", ep, err);
|
|
/* REVISE: remove from endpoint queue? ASSERT? */
|
|
udc_submit_ep_event(dev, buf, -ECONNREFUSED);
|
|
} else {
|
|
udc_ep_set_busy(dev, ep, true);
|
|
}
|
|
} else {
|
|
LOG_DBG("ep 0x%02x waiting, queue is empty", ep);
|
|
}
|
|
}
|
|
|
|
static void udc_event_xfer_out(const struct device *dev,
|
|
nrf_usbd_common_evt_t const *const event)
|
|
{
|
|
uint8_t ep = event->data.eptransfer.ep;
|
|
nrf_usbd_common_ep_status_t err_code;
|
|
struct net_buf *buf;
|
|
size_t len;
|
|
|
|
switch (event->data.eptransfer.status) {
|
|
case NRF_USBD_COMMON_EP_WAITING:
|
|
/*
|
|
* There is nothing to do here, new transfer
|
|
* will be tried in both cases later.
|
|
*/
|
|
break;
|
|
|
|
case NRF_USBD_COMMON_EP_OK:
|
|
err_code = nrf_usbd_common_ep_status_get(ep, &len);
|
|
if (err_code != NRF_USBD_COMMON_EP_OK) {
|
|
LOG_ERR("OUT transfer failed %d", err_code);
|
|
}
|
|
|
|
buf = udc_buf_get(dev, ep);
|
|
if (buf == NULL) {
|
|
LOG_ERR("ep 0x%02x ok, queue is empty", ep);
|
|
return;
|
|
}
|
|
|
|
net_buf_add(buf, len);
|
|
udc_ep_set_busy(dev, ep, false);
|
|
if (ep == USB_CONTROL_EP_OUT) {
|
|
udc_event_xfer_ctrl_out(dev, buf);
|
|
} else {
|
|
udc_submit_ep_event(dev, buf, 0);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
LOG_ERR("Unexpected event (nrfx_usbd): %d, ep 0x%02x",
|
|
event->data.eptransfer.status, ep);
|
|
udc_submit_event(dev, UDC_EVT_ERROR, -EIO);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int usbd_ctrl_feed_dout(const struct device *dev,
|
|
const size_t length)
|
|
{
|
|
|
|
struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
|
|
struct net_buf *buf;
|
|
|
|
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, length);
|
|
if (buf == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
k_fifo_put(&cfg->fifo, buf);
|
|
udc_nrf_clear_control_out(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_event_xfer_setup(const struct device *dev)
|
|
{
|
|
struct net_buf *buf;
|
|
int err;
|
|
|
|
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT,
|
|
sizeof(struct usb_setup_packet));
|
|
if (buf == NULL) {
|
|
LOG_ERR("Failed to allocate for setup");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
udc_ep_buf_set_setup(buf);
|
|
nrf_usbd_common_setup_get((nrf_usbd_common_setup_t *)buf->data);
|
|
net_buf_add(buf, sizeof(nrf_usbd_common_setup_t));
|
|
udc_nrf_setup_rcvd = true;
|
|
|
|
/* Update to next stage of control transfer */
|
|
udc_ctrl_update_stage(dev, buf);
|
|
|
|
if (udc_ctrl_stage_is_data_out(dev)) {
|
|
/* Allocate and feed buffer for data OUT stage */
|
|
LOG_DBG("s:%p|feed for -out-", buf);
|
|
err = usbd_ctrl_feed_dout(dev, udc_data_stage_length(buf));
|
|
if (err == -ENOMEM) {
|
|
err = udc_submit_ep_event(dev, buf, err);
|
|
}
|
|
} else if (udc_ctrl_stage_is_data_in(dev)) {
|
|
err = udc_ctrl_submit_s_in_status(dev);
|
|
} else {
|
|
err = udc_ctrl_submit_s_status(dev);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void udc_nrf_thread(void *p1, void *p2, void *p3)
|
|
{
|
|
ARG_UNUSED(p2);
|
|
ARG_UNUSED(p3);
|
|
|
|
const struct device *dev = p1;
|
|
|
|
while (true) {
|
|
bool start_xfer = false;
|
|
struct udc_nrf_evt evt;
|
|
uint8_t ep;
|
|
|
|
k_msgq_get(&drv_msgq, &evt, K_FOREVER);
|
|
|
|
switch (evt.type) {
|
|
case UDC_NRF_EVT_HAL:
|
|
ep = evt.hal_evt.data.eptransfer.ep;
|
|
switch (evt.hal_evt.type) {
|
|
case NRF_USBD_COMMON_EVT_EPTRANSFER:
|
|
start_xfer = true;
|
|
if (USB_EP_DIR_IS_IN(ep)) {
|
|
udc_event_xfer_in(dev, &evt.hal_evt);
|
|
} else {
|
|
udc_event_xfer_out(dev, &evt.hal_evt);
|
|
}
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_SETUP:
|
|
udc_event_xfer_setup(dev);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case UDC_NRF_EVT_XFER:
|
|
start_xfer = true;
|
|
ep = evt.ep;
|
|
break;
|
|
case UDC_NRF_EVT_STATUS_IN:
|
|
udc_event_fake_status_in(dev);
|
|
break;
|
|
}
|
|
|
|
if (start_xfer) {
|
|
if (USB_EP_DIR_IS_IN(ep)) {
|
|
udc_event_xfer_in_next(dev, ep);
|
|
} else {
|
|
udc_event_xfer_out_next(dev, ep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void udc_sof_check_iso_out(const struct device *dev)
|
|
{
|
|
const uint8_t iso_out_addr = 0x08;
|
|
struct udc_nrf_evt evt = {
|
|
.type = UDC_NRF_EVT_XFER,
|
|
.ep = iso_out_addr,
|
|
};
|
|
struct udc_ep_config *ep_cfg;
|
|
|
|
ep_cfg = udc_get_ep_cfg(dev, iso_out_addr);
|
|
if (ep_cfg == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (ep_cfg->stat.enabled && !k_fifo_is_empty(&ep_cfg->fifo)) {
|
|
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
|
|
}
|
|
}
|
|
|
|
static void usbd_event_handler(nrf_usbd_common_evt_t const *const hal_evt)
|
|
{
|
|
switch (hal_evt->type) {
|
|
case NRF_USBD_COMMON_EVT_SUSPEND:
|
|
LOG_INF("SUSPEND state detected");
|
|
nrf_usbd_common_suspend();
|
|
udc_set_suspended(udc_nrf_dev, true);
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_SUSPEND, 0);
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_RESUME:
|
|
LOG_INF("RESUMING from suspend");
|
|
udc_set_suspended(udc_nrf_dev, false);
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_RESUME, 0);
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_WUREQ:
|
|
LOG_INF("Remote wakeup initiated");
|
|
udc_set_suspended(udc_nrf_dev, false);
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_RESUME, 0);
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_RESET:
|
|
LOG_INF("Reset");
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_RESET, 0);
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_SOF:
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_SOF, 0);
|
|
udc_sof_check_iso_out(udc_nrf_dev);
|
|
break;
|
|
case NRF_USBD_COMMON_EVT_EPTRANSFER:
|
|
case NRF_USBD_COMMON_EVT_SETUP: {
|
|
struct udc_nrf_evt evt = {
|
|
.type = UDC_NRF_EVT_HAL,
|
|
.hal_evt = *hal_evt,
|
|
};
|
|
|
|
/* Forward these two to the thread since mutually exclusive
|
|
* access to the controller is necessary.
|
|
*/
|
|
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void udc_nrf_power_handler(nrfx_power_usb_evt_t pwr_evt)
|
|
{
|
|
switch (pwr_evt) {
|
|
case NRFX_POWER_USB_EVT_DETECTED:
|
|
LOG_DBG("POWER event detected");
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_VBUS_READY, 0);
|
|
break;
|
|
case NRFX_POWER_USB_EVT_READY:
|
|
LOG_DBG("POWER event ready");
|
|
nrf_usbd_common_start(true);
|
|
break;
|
|
case NRFX_POWER_USB_EVT_REMOVED:
|
|
LOG_DBG("POWER event removed");
|
|
udc_submit_event(udc_nrf_dev, UDC_EVT_VBUS_REMOVED, 0);
|
|
break;
|
|
default:
|
|
LOG_ERR("Unknown power event %d", pwr_evt);
|
|
}
|
|
}
|
|
|
|
static void udc_nrf_fake_status_in(const struct device *dev)
|
|
{
|
|
struct udc_nrf_evt evt = {
|
|
.type = UDC_NRF_EVT_STATUS_IN,
|
|
.ep = USB_CONTROL_EP_IN,
|
|
};
|
|
|
|
if (nrf_usbd_common_last_setup_dir_get() == USB_CONTROL_EP_OUT) {
|
|
/* Let controller perform status IN stage */
|
|
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
|
|
}
|
|
}
|
|
|
|
static int udc_nrf_ep_enqueue(const struct device *dev,
|
|
struct udc_ep_config *cfg,
|
|
struct net_buf *buf)
|
|
{
|
|
struct udc_nrf_evt evt = {
|
|
.type = UDC_NRF_EVT_XFER,
|
|
.ep = cfg->addr,
|
|
};
|
|
|
|
udc_buf_put(cfg, buf);
|
|
|
|
if (cfg->addr == USB_CONTROL_EP_IN && buf->len == 0) {
|
|
udc_nrf_fake_status_in(dev);
|
|
return 0;
|
|
}
|
|
|
|
k_msgq_put(&drv_msgq, &evt, K_NO_WAIT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_ep_dequeue(const struct device *dev,
|
|
struct udc_ep_config *cfg)
|
|
{
|
|
bool busy = nrf_usbd_common_ep_is_busy(cfg->addr);
|
|
|
|
nrf_usbd_common_ep_abort(cfg->addr);
|
|
if (USB_EP_DIR_IS_OUT(cfg->addr) || !busy) {
|
|
struct net_buf *buf;
|
|
|
|
/*
|
|
* HAL driver does not generate event for an OUT endpoint
|
|
* or when IN endpoint is not busy.
|
|
*/
|
|
buf = udc_buf_get_all(dev, cfg->addr);
|
|
if (buf) {
|
|
udc_submit_ep_event(dev, buf, -ECONNABORTED);
|
|
} else {
|
|
LOG_INF("ep 0x%02x queue is empty", cfg->addr);
|
|
}
|
|
|
|
}
|
|
|
|
udc_ep_set_busy(dev, cfg->addr, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_ep_enable(const struct device *dev,
|
|
struct udc_ep_config *cfg)
|
|
{
|
|
uint16_t mps;
|
|
|
|
__ASSERT_NO_MSG(cfg);
|
|
mps = (udc_mps_ep_size(cfg) == 0) ? cfg->caps.mps : udc_mps_ep_size(cfg);
|
|
nrf_usbd_common_ep_max_packet_size_set(cfg->addr, mps);
|
|
nrf_usbd_common_ep_enable(cfg->addr);
|
|
if (!NRF_USBD_EPISO_CHECK(cfg->addr)) {
|
|
/* ISO transactions for full-speed device do not support
|
|
* toggle sequencing and should only send DATA0 PID.
|
|
*/
|
|
nrf_usbd_common_ep_dtoggle_clear(cfg->addr);
|
|
nrf_usbd_common_ep_stall_clear(cfg->addr);
|
|
}
|
|
|
|
LOG_DBG("Enable ep 0x%02x", cfg->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_ep_disable(const struct device *dev,
|
|
struct udc_ep_config *cfg)
|
|
{
|
|
__ASSERT_NO_MSG(cfg);
|
|
nrf_usbd_common_ep_disable(cfg->addr);
|
|
LOG_DBG("Disable ep 0x%02x", cfg->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_ep_set_halt(const struct device *dev,
|
|
struct udc_ep_config *cfg)
|
|
{
|
|
LOG_DBG("Halt ep 0x%02x", cfg->addr);
|
|
|
|
if (cfg->addr == USB_CONTROL_EP_OUT ||
|
|
cfg->addr == USB_CONTROL_EP_IN) {
|
|
nrf_usbd_common_setup_stall();
|
|
} else {
|
|
nrf_usbd_common_ep_stall(cfg->addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_ep_clear_halt(const struct device *dev,
|
|
struct udc_ep_config *cfg)
|
|
{
|
|
LOG_DBG("Clear halt ep 0x%02x", cfg->addr);
|
|
|
|
nrf_usbd_common_ep_dtoggle_clear(cfg->addr);
|
|
nrf_usbd_common_ep_stall_clear(cfg->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_set_address(const struct device *dev, const uint8_t addr)
|
|
{
|
|
/**
|
|
* Nothing to do here. The USBD HW already takes care of initiating
|
|
* STATUS stage. Just double check the address for sanity.
|
|
*/
|
|
if (addr != (uint8_t)NRF_USBD->USBADDR) {
|
|
LOG_WRN("USB Address incorrect 0x%02x", addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_host_wakeup(const struct device *dev)
|
|
{
|
|
bool res = nrf_usbd_common_wakeup_req();
|
|
|
|
LOG_DBG("Host wakeup request");
|
|
if (!res) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_enable(const struct device *dev)
|
|
{
|
|
unsigned int key;
|
|
int ret;
|
|
|
|
ret = nrf_usbd_common_init(usbd_event_handler);
|
|
if (ret != NRFX_SUCCESS) {
|
|
LOG_ERR("nRF USBD driver initialization failed");
|
|
return -EIO;
|
|
}
|
|
|
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_OUT,
|
|
USB_EP_TYPE_CONTROL, UDC_NRF_EP0_SIZE, 0)) {
|
|
LOG_ERR("Failed to enable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
if (udc_ep_enable_internal(dev, USB_CONTROL_EP_IN,
|
|
USB_EP_TYPE_CONTROL, UDC_NRF_EP0_SIZE, 0)) {
|
|
LOG_ERR("Failed to enable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
sys_notify_init_spinwait(&hfxo_cli.notify);
|
|
ret = onoff_request(hfxo_mgr, &hfxo_cli);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to start HFXO %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Disable interrupts until USBD is enabled */
|
|
key = irq_lock();
|
|
nrf_usbd_common_enable();
|
|
irq_unlock(key);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_disable(const struct device *dev)
|
|
{
|
|
int ret;
|
|
|
|
nrf_usbd_common_disable();
|
|
|
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_OUT)) {
|
|
LOG_ERR("Failed to disable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
if (udc_ep_disable_internal(dev, USB_CONTROL_EP_IN)) {
|
|
LOG_ERR("Failed to disable control endpoint");
|
|
return -EIO;
|
|
}
|
|
|
|
nrf_usbd_common_uninit();
|
|
|
|
ret = onoff_cancel_or_release(hfxo_mgr, &hfxo_cli);
|
|
if (ret < 0) {
|
|
LOG_ERR("Failed to stop HFXO %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_init(const struct device *dev)
|
|
{
|
|
const struct udc_nrf_config *cfg = dev->config;
|
|
|
|
hfxo_mgr = z_nrf_clock_control_get_onoff(cfg->clock);
|
|
|
|
#ifdef CONFIG_HAS_HW_NRF_USBREG
|
|
/* Use CLOCK/POWER priority for compatibility with other series where
|
|
* USB events are handled by CLOCK interrupt handler.
|
|
*/
|
|
IRQ_CONNECT(USBREGULATOR_IRQn,
|
|
DT_IRQ(DT_INST(0, nordic_nrf_clock), priority),
|
|
nrfx_isr, nrfx_usbreg_irq_handler, 0);
|
|
irq_enable(USBREGULATOR_IRQn);
|
|
#endif
|
|
|
|
IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority),
|
|
nrfx_isr, nrf_usbd_common_irq_handler, 0);
|
|
|
|
(void)nrfx_power_init(&cfg->pwr);
|
|
nrfx_power_usbevt_init(&cfg->evt);
|
|
|
|
nrfx_power_usbevt_enable();
|
|
LOG_INF("Initialized");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_shutdown(const struct device *dev)
|
|
{
|
|
LOG_INF("shutdown");
|
|
|
|
nrfx_power_usbevt_disable();
|
|
nrfx_power_usbevt_uninit();
|
|
#ifdef CONFIG_HAS_HW_NRF_USBREG
|
|
irq_disable(USBREGULATOR_IRQn);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_driver_init(const struct device *dev)
|
|
{
|
|
struct udc_data *data = dev->data;
|
|
int err;
|
|
|
|
LOG_INF("Preinit");
|
|
udc_nrf_dev = dev;
|
|
k_mutex_init(&data->mutex);
|
|
k_thread_create(&drv_stack_data, drv_stack,
|
|
K_KERNEL_STACK_SIZEOF(drv_stack),
|
|
udc_nrf_thread,
|
|
(void *)dev, NULL, NULL,
|
|
K_PRIO_COOP(8), 0, K_NO_WAIT);
|
|
|
|
k_thread_name_set(&drv_stack_data, "udc_nrfx");
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(ep_cfg_out); i++) {
|
|
ep_cfg_out[i].caps.out = 1;
|
|
if (i == 0) {
|
|
ep_cfg_out[i].caps.control = 1;
|
|
ep_cfg_out[i].caps.mps = NRF_USBD_COMMON_EPSIZE;
|
|
} else if (i < (CFG_EPOUT_CNT + 1)) {
|
|
ep_cfg_out[i].caps.bulk = 1;
|
|
ep_cfg_out[i].caps.interrupt = 1;
|
|
ep_cfg_out[i].caps.mps = NRF_USBD_COMMON_EPSIZE;
|
|
} else {
|
|
ep_cfg_out[i].caps.iso = 1;
|
|
ep_cfg_out[i].caps.mps = NRF_USBD_COMMON_ISOSIZE / 2;
|
|
}
|
|
|
|
ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
|
|
err = udc_register_ep(dev, &ep_cfg_out[i]);
|
|
if (err != 0) {
|
|
LOG_ERR("Failed to register endpoint");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < ARRAY_SIZE(ep_cfg_in); i++) {
|
|
ep_cfg_in[i].caps.in = 1;
|
|
if (i == 0) {
|
|
ep_cfg_in[i].caps.control = 1;
|
|
ep_cfg_in[i].caps.mps = NRF_USBD_COMMON_EPSIZE;
|
|
} else if (i < (CFG_EPIN_CNT + 1)) {
|
|
ep_cfg_in[i].caps.bulk = 1;
|
|
ep_cfg_in[i].caps.interrupt = 1;
|
|
ep_cfg_in[i].caps.mps = NRF_USBD_COMMON_EPSIZE;
|
|
} else {
|
|
ep_cfg_in[i].caps.iso = 1;
|
|
ep_cfg_in[i].caps.mps = NRF_USBD_COMMON_ISOSIZE / 2;
|
|
}
|
|
|
|
ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
|
|
err = udc_register_ep(dev, &ep_cfg_in[i]);
|
|
if (err != 0) {
|
|
LOG_ERR("Failed to register endpoint");
|
|
return err;
|
|
}
|
|
}
|
|
|
|
data->caps.rwup = true;
|
|
data->caps.out_ack = true;
|
|
data->caps.mps0 = UDC_NRF_MPS0;
|
|
data->caps.can_detect_vbus = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int udc_nrf_lock(const struct device *dev)
|
|
{
|
|
return udc_lock_internal(dev, K_FOREVER);
|
|
}
|
|
|
|
static int udc_nrf_unlock(const struct device *dev)
|
|
{
|
|
return udc_unlock_internal(dev);
|
|
}
|
|
|
|
static const struct udc_nrf_config udc_nrf_cfg = {
|
|
.clock = COND_CODE_1(NRF_CLOCK_HAS_HFCLK192M,
|
|
(CLOCK_CONTROL_NRF_SUBSYS_HF192M),
|
|
(CLOCK_CONTROL_NRF_SUBSYS_HF)),
|
|
.pwr = {
|
|
.dcdcen = (DT_PROP(DT_INST(0, nordic_nrf5x_regulator), regulator_initial_mode)
|
|
== NRF5X_REG_MODE_DCDC),
|
|
#if NRFX_POWER_SUPPORTS_DCDCEN_VDDH
|
|
.dcdcenhv = COND_CODE_1(CONFIG_SOC_SERIES_NRF52X,
|
|
(DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nordic_nrf52x_regulator_hv))),
|
|
(DT_NODE_HAS_STATUS_OKAY(DT_INST(0, nordic_nrf53x_regulator_hv)))),
|
|
#endif
|
|
},
|
|
|
|
.evt = {
|
|
.handler = udc_nrf_power_handler
|
|
},
|
|
};
|
|
|
|
static struct udc_data udc_nrf_data = {
|
|
.mutex = Z_MUTEX_INITIALIZER(udc_nrf_data.mutex),
|
|
.priv = NULL,
|
|
};
|
|
|
|
static const struct udc_api udc_nrf_api = {
|
|
.lock = udc_nrf_lock,
|
|
.unlock = udc_nrf_unlock,
|
|
.init = udc_nrf_init,
|
|
.enable = udc_nrf_enable,
|
|
.disable = udc_nrf_disable,
|
|
.shutdown = udc_nrf_shutdown,
|
|
.set_address = udc_nrf_set_address,
|
|
.host_wakeup = udc_nrf_host_wakeup,
|
|
.ep_try_config = NULL,
|
|
.ep_enable = udc_nrf_ep_enable,
|
|
.ep_disable = udc_nrf_ep_disable,
|
|
.ep_set_halt = udc_nrf_ep_set_halt,
|
|
.ep_clear_halt = udc_nrf_ep_clear_halt,
|
|
.ep_enqueue = udc_nrf_ep_enqueue,
|
|
.ep_dequeue = udc_nrf_ep_dequeue,
|
|
};
|
|
|
|
DEVICE_DT_INST_DEFINE(0, udc_nrf_driver_init, NULL,
|
|
&udc_nrf_data, &udc_nrf_cfg,
|
|
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE,
|
|
&udc_nrf_api);
|