zephyr/drivers/clock_control/clock_stm32_ll_u5.c

924 lines
25 KiB
C

/*
*
* Copyright (c) 2021 Linaro Limited
* Copyright (c) 2022 Thomas Stranger
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <stm32_ll_system.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
#include "clock_stm32_ll_mco.h"
/* Macros to fill up prescaler values */
#define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)
#define PLL1_ID 1
#define PLL2_ID 2
#define PLL3_ID 3
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
static uint32_t get_msis_frequency(void)
{
return __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSIS_GetRange() :
LL_RCC_MSIS_GetRangeAfterStandby()));
}
__unused
/** @brief returns the pll source frequency of given pll_id */
static uint32_t get_pllsrc_frequency(size_t pll_id)
{
if ((IS_ENABLED(STM32_PLL_SRC_HSI) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_HSI) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_HSI) && pll_id == PLL3_ID)) {
return STM32_HSI_FREQ;
} else if ((IS_ENABLED(STM32_PLL_SRC_HSE) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_HSE) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_HSE) && pll_id == PLL3_ID)) {
return STM32_HSE_FREQ;
} else if ((IS_ENABLED(STM32_PLL_SRC_MSIS) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_MSIS) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_MSIS) && pll_id == PLL3_ID)) {
return get_msis_frequency();
}
__ASSERT(0, "No PLL Source configured");
return 0;
}
static uint32_t get_startup_frequency(void)
{
switch (LL_RCC_GetSysClkSource()) {
case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS:
return get_msis_frequency();
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
return STM32_HSI_FREQ;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
return STM32_HSE_FREQ;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
return get_pllsrc_frequency(PLL1_ID);
default:
__ASSERT(0, "Unexpected startup freq");
return 0;
}
}
__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}
static uint32_t get_sysclk_frequency(void)
{
#if defined(STM32_SYSCLK_SRC_PLL)
return get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
#elif defined(STM32_SYSCLK_SRC_MSIS)
return get_msis_frequency();
#elif defined(STM32_SYSCLK_SRC_HSE)
return STM32_HSE_FREQ;
#elif defined(STM32_SYSCLK_SRC_HSI)
return STM32_HSI_FREQ;
#else
__ASSERT(0, "No SYSCLK Source configured");
return 0;
#endif
}
/** @brief Verifies clock is part of active clock configuration */
int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
(src_clk == STM32_SRC_HCLK) ||
(src_clk == STM32_SRC_PCLK1) ||
(src_clk == STM32_SRC_PCLK2) ||
(src_clk == STM32_SRC_PCLK3) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) ||
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) ||
((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
volatile int temp;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
/* Delay after enabling the clock, to allow it to become active */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attempt to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sys,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sys);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER);
ARG_UNUSED(dev);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB2_2:
case STM32_CLOCK_BUS_AHB3:
case STM32_SRC_HCLK:
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
case STM32_SRC_PCLK1:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
case STM32_SRC_PCLK2:
*rate = apb2_clock;
break;
case STM32_CLOCK_BUS_APB3:
case STM32_SRC_PCLK3:
*rate = apb3_clock;
break;
case STM32_SRC_SYSCLK:
*rate = get_sysclk_frequency();
break;
#if defined(STM32_HSI_ENABLED)
case STM32_SRC_HSI16:
*rate = STM32_HSI_FREQ;
break;
#endif /* STM32_HSI_ENABLED */
#if defined(STM32_MSIS_ENABLED)
case STM32_SRC_MSIS:
*rate = get_msis_frequency();
break;
#endif /* STM32_MSIS_ENABLED */
#if defined(STM32_MSIK_ENABLED)
case STM32_SRC_MSIK:
*rate = __LL_RCC_CALC_MSIK_FREQ(LL_RCC_MSIRANGESEL_RUN,
STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
break;
#endif /* STM32_MSIK_ENABLED */
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
case STM32_SRC_PLL1_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
case STM32_SRC_PLL1_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
case STM32_SRC_PLL1_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
case STM32_SRC_PLL2_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_P_DIVISOR);
break;
case STM32_SRC_PLL2_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_Q_DIVISOR);
break;
case STM32_SRC_PLL2_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_R_DIVISOR);
break;
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
case STM32_SRC_PLL3_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_P_DIVISOR);
break;
case STM32_SRC_PLL3_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_Q_DIVISOR);
break;
case STM32_SRC_PLL3_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_R_DIVISOR);
break;
#endif /* STM32_PLL3_ENABLED */
default:
return -ENOTSUP;
}
return 0;
}
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) {
/* Gated clocks */
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
== pclken->enr) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
} else {
/* Domain clock sources */
if (enabled_clock(pclken->bus) == 0) {
return CLOCK_CONTROL_STATUS_ON;
} else {
return CLOCK_CONTROL_STATUS_OFF;
}
}
}
static const struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.get_status = stm32_clock_control_get_status,
.configure = stm32_clock_control_configure,
};
__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range, size_t pll_id)
{
uint32_t vco_freq;
vco_freq = get_pllsrc_frequency(pll_id) / m_div;
if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) {
*range = LL_RCC_PLLINPUTRANGE_4_8;
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
*range = LL_RCC_PLLINPUTRANGE_8_16;
} else {
return -ERANGE;
}
return 0;
}
static void set_regu_voltage(uint32_t hclk_freq)
{
if (hclk_freq < MHZ(25)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE4);
} else if (hclk_freq < MHZ(55)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE3);
} else if (hclk_freq < MHZ(110)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
}
while (LL_PWR_IsActiveFlag_VOS() == 0) {
}
}
#if defined(STM32_PLL_ENABLED)
/*
* Dynamic voltage scaling:
* Enable the Booster mode before enabling then PLL for sysclock above 55MHz
* The goal of this function is to set the epod prescaler, so that epod clock freq
* is between 4MHz and 16MHz.
* Up to now only MSI as PLL1 source clock can be > 16MHz, requiring a epod prescaler > 1
* For HSI16, epod prescaler is default (div1, not divided).
* Once HSE is > 16MHz, the epod prescaler would also be also required.
*/
static void set_epod_booster(void)
{
/* Reset Epod Prescaler in case it was set earlier with another DIV value */
LL_PWR_DisableEPODBooster();
while (LL_PWR_IsActiveFlag_BOOST() == 1) {
}
LL_RCC_SetPll1EPodPrescaler(LL_RCC_PLL1MBOOST_DIV_1);
if (MHZ(55) <= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
/*
* Set EPOD clock prescaler based on PLL1 input freq
* (MSI/PLLM or HSE/PLLM when HSE is > 16MHz
* Booster clock frequency should be between 4 and 16MHz
* This is done in following steps:
* Read MSI Frequency or HSE oscillaor freq
* Divide PLL1 input freq (MSI/PLL or HSE/PLLM)
* by the targeted freq (8MHz).
* Make sure value is not higher than 16
* Shift in the register space (/2)
*/
int tmp;
if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN,
STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
} else if (IS_ENABLED(STM32_PLL_SRC_HSE) && (MHZ(16) < STM32_HSE_FREQ)) {
tmp = STM32_HSE_FREQ;
} else {
return;
}
tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16);
tmp = tmp / 2;
/* Configure the epod clock frequency between 4 and 16 MHz */
LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos);
/* Enable EPOD booster and wait for booster ready flag set */
LL_PWR_EnableEPODBooster();
while (LL_PWR_IsActiveFlag_BOOST() == 0) {
}
}
}
#endif /* STM32_PLL_ENABLED */
__unused
static void clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
}
__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || \
defined(STM32_PLL3_ENABLED)
int r;
uint32_t vco_input_range;
#endif
#if defined(STM32_PLL_ENABLED)
/*
* Switch to HSI and disable the PLL before configuration.
* (Switching to HSI makes sure we have a SYSCLK source in
* case we're currently running from the PLL we're about to
* turn off and reconfigure.)
*/
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
clock_switch_to_hsi();
}
LL_RCC_PLL1_Disable();
/* Configure PLL source : Can be HSE, HSI, MSIS */
if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI);
} else {
return -ENOTSUP;
}
/*
* Configure the EPOD booster
* before increasing the system clock freq
* and after pll clock source is set
*/
set_epod_booster();
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range, PLL1_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR);
/* Set VCO Input before enabling the PLL, depends on freq used for PLL1 */
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
LL_RCC_PLL1FRACN_Disable();
if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) {
LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE);
LL_RCC_PLL1FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
LL_RCC_PLL1_EnableDomain_SAI();
}
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
LL_RCC_PLL1_EnableDomain_48M();
}
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
__ASSERT_NO_MSG((STM32_PLL_R_DIVISOR == 1) ||
(STM32_PLL_R_DIVISOR % 2 == 0));
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
LL_RCC_PLL1_EnableDomain_SYS();
}
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U) {
}
#else
/* Init PLL source to None */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE);
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
/* Configure PLL2 source */
if (IS_ENABLED(STM32_PLL2_SRC_HSE)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL2_SRC_MSIS)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL2_SRC_HSI)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSI);
} else {
return -ENOTSUP;
}
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range, PLL2_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL2_SetDivider(STM32_PLL2_M_DIVISOR);
LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);
LL_RCC_PLL2FRACN_Disable();
if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) {
LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE);
LL_RCC_PLL2FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2PEN);
}
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2QEN);
}
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2REN);
}
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
}
#else
/* Init PLL2 source to None */
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_NONE);
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
/* Configure PLL3 source */
if (IS_ENABLED(STM32_PLL3_SRC_HSE)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL3_SRC_MSIS)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL3_SRC_HSI)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSI);
} else {
return -ENOTSUP;
}
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range, PLL3_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL3_SetDivider(STM32_PLL3_M_DIVISOR);
LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);
LL_RCC_PLL3FRACN_Disable();
if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) {
LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE);
LL_RCC_PLL3FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3PEN);
}
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3QEN);
}
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3REN);
}
LL_RCC_PLL3_Enable();
while (LL_RCC_PLL3_IsReady() != 1U) {
}
#else
/* Init PLL3 source to None */
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_NONE);
#endif /* STM32_PLL3_ENABLED */
return 0;
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Check if need to enable HSE bypass feature or not */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* Enable the power interface clock */
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
if (!LL_PWR_IsEnabledBkUpAccess()) {
/* Enable write access to Backup domain */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
}
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE Oscillator */
LL_RCC_LSE_Enable();
/* Wait for LSE ready */
while (!LL_RCC_LSE_IsReady()) {
}
/* Enable LSESYS additionally */
LL_RCC_LSE_EnablePropagation();
/* Wait till LSESYS is ready */
while (!LL_RCC_LSESYS_IsReady()) {
}
LL_PWR_DisableBkUpAccess();
}
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
/* Set MSIS Range */
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
if (IS_ENABLED(STM32_MSIS_PLL_MODE)) {
__ASSERT(STM32_LSE_ENABLED,
"MSIS Hardware auto calibration needs LSE clock activation");
/* Enable MSI hardware auto calibration */
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIS);
LL_RCC_MSI_EnablePLLMode();
}
/* Enable MSIS */
LL_RCC_MSIS_Enable();
/* Wait till MSIS is ready */
while (LL_RCC_MSIS_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_MSIK_ENABLED)) {
/* Set MSIK Range */
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSIK_SetRange(STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
if (IS_ENABLED(STM32_MSIK_PLL_MODE)) {
__ASSERT(STM32_LSE_ENABLED,
"MSIK Hardware auto calibration needs LSE clock activation");
/* Enable MSI hardware auto calibration */
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIK);
LL_RCC_MSI_EnablePLLMode();
}
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
__ASSERT((STM32_MSIK_PLL_MODE == STM32_MSIS_PLL_MODE),
"Please check MSIS/MSIK config consistency");
}
/* Enable MSIK */
LL_RCC_MSIK_Enable();
/* Wait till MSIK is ready */
while (LL_RCC_MSIK_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
if (!LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR)) {
/* Enable the power interface clock */
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
}
if (!LL_PWR_IsEnabledBkUpAccess()) {
/* Enable write access to Backup domain */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
}
/* Enable LSI oscillator */
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
LL_PWR_DisableBkUpAccess();
}
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
}
int stm32_clock_control_init(const struct device *dev)
{
uint32_t old_hclk_freq;
int r;
ARG_UNUSED(dev);
/* Current hclk value */
old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler());
/* Set voltage regulator to comply with targeted system frequency */
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/* Set flash latency */
/* If freq increases, set flash latency before any clock setting */
if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Set up individual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
r = set_up_plls();
if (r < 0) {
return r;
}
/* Set peripheral buses prescalers */
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER));
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER));
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* Set PLL1 as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_MSIS)) {
/* Set MSIS as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
} else {
return -ENOTSUP;
}
/* Set FLASH latency */
/* If freq not increased, set flash latency after all clock setting */
if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
/* configure MCO1/MCO2 based on Kconfig */
stm32_clock_control_mco_init();
return 0;
}
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);