924 lines
25 KiB
C
924 lines
25 KiB
C
/*
|
|
*
|
|
* Copyright (c) 2021 Linaro Limited
|
|
* Copyright (c) 2022 Thomas Stranger
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
|
|
#include <soc.h>
|
|
#include <stm32_ll_bus.h>
|
|
#include <stm32_ll_pwr.h>
|
|
#include <stm32_ll_rcc.h>
|
|
#include <stm32_ll_utils.h>
|
|
#include <stm32_ll_system.h>
|
|
#include <zephyr/arch/cpu.h>
|
|
#include <zephyr/drivers/clock_control.h>
|
|
#include <zephyr/sys/util.h>
|
|
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
|
|
#include "clock_stm32_ll_mco.h"
|
|
|
|
/* Macros to fill up prescaler values */
|
|
#define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
|
|
#define ahb_prescaler(v) z_ahb_prescaler(v)
|
|
|
|
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
|
|
#define apb1_prescaler(v) z_apb1_prescaler(v)
|
|
|
|
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
|
|
#define apb2_prescaler(v) z_apb2_prescaler(v)
|
|
|
|
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
|
|
#define apb3_prescaler(v) z_apb3_prescaler(v)
|
|
|
|
#define PLL1_ID 1
|
|
#define PLL2_ID 2
|
|
#define PLL3_ID 3
|
|
|
|
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
|
|
{
|
|
return clock / prescaler;
|
|
}
|
|
|
|
static uint32_t get_msis_frequency(void)
|
|
{
|
|
return __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
|
|
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
|
|
LL_RCC_MSIS_GetRange() :
|
|
LL_RCC_MSIS_GetRangeAfterStandby()));
|
|
}
|
|
|
|
__unused
|
|
/** @brief returns the pll source frequency of given pll_id */
|
|
static uint32_t get_pllsrc_frequency(size_t pll_id)
|
|
{
|
|
|
|
if ((IS_ENABLED(STM32_PLL_SRC_HSI) && pll_id == PLL1_ID) ||
|
|
(IS_ENABLED(STM32_PLL2_SRC_HSI) && pll_id == PLL2_ID) ||
|
|
(IS_ENABLED(STM32_PLL3_SRC_HSI) && pll_id == PLL3_ID)) {
|
|
return STM32_HSI_FREQ;
|
|
} else if ((IS_ENABLED(STM32_PLL_SRC_HSE) && pll_id == PLL1_ID) ||
|
|
(IS_ENABLED(STM32_PLL2_SRC_HSE) && pll_id == PLL2_ID) ||
|
|
(IS_ENABLED(STM32_PLL3_SRC_HSE) && pll_id == PLL3_ID)) {
|
|
return STM32_HSE_FREQ;
|
|
} else if ((IS_ENABLED(STM32_PLL_SRC_MSIS) && pll_id == PLL1_ID) ||
|
|
(IS_ENABLED(STM32_PLL2_SRC_MSIS) && pll_id == PLL2_ID) ||
|
|
(IS_ENABLED(STM32_PLL3_SRC_MSIS) && pll_id == PLL3_ID)) {
|
|
return get_msis_frequency();
|
|
}
|
|
|
|
__ASSERT(0, "No PLL Source configured");
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t get_startup_frequency(void)
|
|
{
|
|
switch (LL_RCC_GetSysClkSource()) {
|
|
case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS:
|
|
return get_msis_frequency();
|
|
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
|
|
return STM32_HSI_FREQ;
|
|
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
|
|
return STM32_HSE_FREQ;
|
|
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
|
|
return get_pllsrc_frequency(PLL1_ID);
|
|
default:
|
|
__ASSERT(0, "Unexpected startup freq");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
__unused
|
|
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
|
|
int pllm_div,
|
|
int plln_mul,
|
|
int pllout_div)
|
|
{
|
|
__ASSERT_NO_MSG(pllm_div && pllout_div);
|
|
|
|
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
|
|
}
|
|
|
|
static uint32_t get_sysclk_frequency(void)
|
|
{
|
|
#if defined(STM32_SYSCLK_SRC_PLL)
|
|
return get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
|
|
STM32_PLL_M_DIVISOR,
|
|
STM32_PLL_N_MULTIPLIER,
|
|
STM32_PLL_R_DIVISOR);
|
|
#elif defined(STM32_SYSCLK_SRC_MSIS)
|
|
return get_msis_frequency();
|
|
#elif defined(STM32_SYSCLK_SRC_HSE)
|
|
return STM32_HSE_FREQ;
|
|
#elif defined(STM32_SYSCLK_SRC_HSI)
|
|
return STM32_HSI_FREQ;
|
|
#else
|
|
__ASSERT(0, "No SYSCLK Source configured");
|
|
return 0;
|
|
#endif
|
|
|
|
}
|
|
|
|
/** @brief Verifies clock is part of active clock configuration */
|
|
int enabled_clock(uint32_t src_clk)
|
|
{
|
|
if ((src_clk == STM32_SRC_SYSCLK) ||
|
|
(src_clk == STM32_SRC_HCLK) ||
|
|
(src_clk == STM32_SRC_PCLK1) ||
|
|
(src_clk == STM32_SRC_PCLK2) ||
|
|
(src_clk == STM32_SRC_PCLK3) ||
|
|
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
|
|
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) ||
|
|
((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
|
|
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
|
|
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
|
|
((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) ||
|
|
((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
|
|
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
|
|
return 0;
|
|
}
|
|
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
static inline int stm32_clock_control_on(const struct device *dev,
|
|
clock_control_subsys_t sub_system)
|
|
{
|
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
|
|
volatile int temp;
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
|
|
/* Attempt to toggle a wrong periph clock bit */
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
|
|
pclken->enr);
|
|
/* Delay after enabling the clock, to allow it to become active */
|
|
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
|
|
UNUSED(temp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int stm32_clock_control_off(const struct device *dev,
|
|
clock_control_subsys_t sub_system)
|
|
{
|
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
|
|
/* Attempt to toggle a wrong periph clock bit */
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
|
|
pclken->enr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int stm32_clock_control_configure(const struct device *dev,
|
|
clock_control_subsys_t sub_system,
|
|
void *data)
|
|
{
|
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
|
|
int err;
|
|
|
|
ARG_UNUSED(dev);
|
|
ARG_UNUSED(data);
|
|
|
|
err = enabled_clock(pclken->bus);
|
|
if (err < 0) {
|
|
/* Attempt to configure a src clock not available or not valid */
|
|
return err;
|
|
}
|
|
|
|
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
|
|
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
|
|
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
|
|
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
|
|
clock_control_subsys_t sys,
|
|
uint32_t *rate)
|
|
{
|
|
struct stm32_pclken *pclken = (struct stm32_pclken *)(sys);
|
|
|
|
/*
|
|
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
|
|
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
|
|
* since it will be updated after clock configuration and hence
|
|
* more likely to contain actual clock speed
|
|
*/
|
|
uint32_t ahb_clock = SystemCoreClock;
|
|
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
|
|
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
|
|
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER);
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
switch (pclken->bus) {
|
|
case STM32_CLOCK_BUS_AHB1:
|
|
case STM32_CLOCK_BUS_AHB2:
|
|
case STM32_CLOCK_BUS_AHB2_2:
|
|
case STM32_CLOCK_BUS_AHB3:
|
|
case STM32_SRC_HCLK:
|
|
*rate = ahb_clock;
|
|
break;
|
|
case STM32_CLOCK_BUS_APB1:
|
|
case STM32_CLOCK_BUS_APB1_2:
|
|
case STM32_SRC_PCLK1:
|
|
*rate = apb1_clock;
|
|
break;
|
|
case STM32_CLOCK_BUS_APB2:
|
|
case STM32_SRC_PCLK2:
|
|
*rate = apb2_clock;
|
|
break;
|
|
case STM32_CLOCK_BUS_APB3:
|
|
case STM32_SRC_PCLK3:
|
|
*rate = apb3_clock;
|
|
break;
|
|
case STM32_SRC_SYSCLK:
|
|
*rate = get_sysclk_frequency();
|
|
break;
|
|
#if defined(STM32_HSI_ENABLED)
|
|
case STM32_SRC_HSI16:
|
|
*rate = STM32_HSI_FREQ;
|
|
break;
|
|
#endif /* STM32_HSI_ENABLED */
|
|
#if defined(STM32_MSIS_ENABLED)
|
|
case STM32_SRC_MSIS:
|
|
*rate = get_msis_frequency();
|
|
break;
|
|
#endif /* STM32_MSIS_ENABLED */
|
|
#if defined(STM32_MSIK_ENABLED)
|
|
case STM32_SRC_MSIK:
|
|
*rate = __LL_RCC_CALC_MSIK_FREQ(LL_RCC_MSIRANGESEL_RUN,
|
|
STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
|
|
break;
|
|
#endif /* STM32_MSIK_ENABLED */
|
|
#if defined(STM32_HSE_ENABLED)
|
|
case STM32_SRC_HSE:
|
|
*rate = STM32_HSE_FREQ;
|
|
break;
|
|
#endif /* STM32_HSE_ENABLED */
|
|
#if defined(STM32_LSE_ENABLED)
|
|
case STM32_SRC_LSE:
|
|
*rate = STM32_LSE_FREQ;
|
|
break;
|
|
#endif /* STM32_LSE_ENABLED */
|
|
#if defined(STM32_LSI_ENABLED)
|
|
case STM32_SRC_LSI:
|
|
*rate = STM32_LSI_FREQ;
|
|
break;
|
|
#endif /* STM32_LSI_ENABLED */
|
|
#if defined(STM32_HSI48_ENABLED)
|
|
case STM32_SRC_HSI48:
|
|
*rate = STM32_HSI48_FREQ;
|
|
break;
|
|
#endif /* STM32_HSI48_ENABLED */
|
|
#if defined(STM32_PLL_ENABLED)
|
|
case STM32_SRC_PLL1_P:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
|
|
STM32_PLL_M_DIVISOR,
|
|
STM32_PLL_N_MULTIPLIER,
|
|
STM32_PLL_P_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL1_Q:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
|
|
STM32_PLL_M_DIVISOR,
|
|
STM32_PLL_N_MULTIPLIER,
|
|
STM32_PLL_Q_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL1_R:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
|
|
STM32_PLL_M_DIVISOR,
|
|
STM32_PLL_N_MULTIPLIER,
|
|
STM32_PLL_R_DIVISOR);
|
|
break;
|
|
#endif /* STM32_PLL_ENABLED */
|
|
#if defined(STM32_PLL2_ENABLED)
|
|
case STM32_SRC_PLL2_P:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
|
|
STM32_PLL2_M_DIVISOR,
|
|
STM32_PLL2_N_MULTIPLIER,
|
|
STM32_PLL2_P_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL2_Q:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
|
|
STM32_PLL2_M_DIVISOR,
|
|
STM32_PLL2_N_MULTIPLIER,
|
|
STM32_PLL2_Q_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL2_R:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
|
|
STM32_PLL2_M_DIVISOR,
|
|
STM32_PLL2_N_MULTIPLIER,
|
|
STM32_PLL2_R_DIVISOR);
|
|
break;
|
|
#endif /* STM32_PLL2_ENABLED */
|
|
#if defined(STM32_PLL3_ENABLED)
|
|
case STM32_SRC_PLL3_P:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
|
|
STM32_PLL3_M_DIVISOR,
|
|
STM32_PLL3_N_MULTIPLIER,
|
|
STM32_PLL3_P_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL3_Q:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
|
|
STM32_PLL3_M_DIVISOR,
|
|
STM32_PLL3_N_MULTIPLIER,
|
|
STM32_PLL3_Q_DIVISOR);
|
|
break;
|
|
case STM32_SRC_PLL3_R:
|
|
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
|
|
STM32_PLL3_M_DIVISOR,
|
|
STM32_PLL3_N_MULTIPLIER,
|
|
STM32_PLL3_R_DIVISOR);
|
|
break;
|
|
#endif /* STM32_PLL3_ENABLED */
|
|
default:
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum clock_control_status stm32_clock_control_get_status(const struct device *dev,
|
|
clock_control_subsys_t sub_system)
|
|
{
|
|
struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system;
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) {
|
|
/* Gated clocks */
|
|
if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr)
|
|
== pclken->enr) {
|
|
return CLOCK_CONTROL_STATUS_ON;
|
|
} else {
|
|
return CLOCK_CONTROL_STATUS_OFF;
|
|
}
|
|
} else {
|
|
/* Domain clock sources */
|
|
if (enabled_clock(pclken->bus) == 0) {
|
|
return CLOCK_CONTROL_STATUS_ON;
|
|
} else {
|
|
return CLOCK_CONTROL_STATUS_OFF;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const struct clock_control_driver_api stm32_clock_control_api = {
|
|
.on = stm32_clock_control_on,
|
|
.off = stm32_clock_control_off,
|
|
.get_rate = stm32_clock_control_get_subsys_rate,
|
|
.get_status = stm32_clock_control_get_status,
|
|
.configure = stm32_clock_control_configure,
|
|
};
|
|
|
|
__unused
|
|
static int get_vco_input_range(uint32_t m_div, uint32_t *range, size_t pll_id)
|
|
{
|
|
uint32_t vco_freq;
|
|
|
|
vco_freq = get_pllsrc_frequency(pll_id) / m_div;
|
|
|
|
if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) {
|
|
*range = LL_RCC_PLLINPUTRANGE_4_8;
|
|
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
|
|
*range = LL_RCC_PLLINPUTRANGE_8_16;
|
|
} else {
|
|
return -ERANGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_regu_voltage(uint32_t hclk_freq)
|
|
{
|
|
if (hclk_freq < MHZ(25)) {
|
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE4);
|
|
} else if (hclk_freq < MHZ(55)) {
|
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE3);
|
|
} else if (hclk_freq < MHZ(110)) {
|
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
|
|
} else {
|
|
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
|
|
}
|
|
while (LL_PWR_IsActiveFlag_VOS() == 0) {
|
|
}
|
|
}
|
|
|
|
#if defined(STM32_PLL_ENABLED)
|
|
/*
|
|
* Dynamic voltage scaling:
|
|
* Enable the Booster mode before enabling then PLL for sysclock above 55MHz
|
|
* The goal of this function is to set the epod prescaler, so that epod clock freq
|
|
* is between 4MHz and 16MHz.
|
|
* Up to now only MSI as PLL1 source clock can be > 16MHz, requiring a epod prescaler > 1
|
|
* For HSI16, epod prescaler is default (div1, not divided).
|
|
* Once HSE is > 16MHz, the epod prescaler would also be also required.
|
|
*/
|
|
static void set_epod_booster(void)
|
|
{
|
|
/* Reset Epod Prescaler in case it was set earlier with another DIV value */
|
|
LL_PWR_DisableEPODBooster();
|
|
while (LL_PWR_IsActiveFlag_BOOST() == 1) {
|
|
}
|
|
|
|
LL_RCC_SetPll1EPodPrescaler(LL_RCC_PLL1MBOOST_DIV_1);
|
|
|
|
if (MHZ(55) <= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
|
|
/*
|
|
* Set EPOD clock prescaler based on PLL1 input freq
|
|
* (MSI/PLLM or HSE/PLLM when HSE is > 16MHz
|
|
* Booster clock frequency should be between 4 and 16MHz
|
|
* This is done in following steps:
|
|
* Read MSI Frequency or HSE oscillaor freq
|
|
* Divide PLL1 input freq (MSI/PLL or HSE/PLLM)
|
|
* by the targeted freq (8MHz).
|
|
* Make sure value is not higher than 16
|
|
* Shift in the register space (/2)
|
|
*/
|
|
int tmp;
|
|
|
|
if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
|
|
tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN,
|
|
STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
|
|
} else if (IS_ENABLED(STM32_PLL_SRC_HSE) && (MHZ(16) < STM32_HSE_FREQ)) {
|
|
tmp = STM32_HSE_FREQ;
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16);
|
|
tmp = tmp / 2;
|
|
|
|
/* Configure the epod clock frequency between 4 and 16 MHz */
|
|
LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos);
|
|
|
|
/* Enable EPOD booster and wait for booster ready flag set */
|
|
LL_PWR_EnableEPODBooster();
|
|
while (LL_PWR_IsActiveFlag_BOOST() == 0) {
|
|
}
|
|
}
|
|
}
|
|
#endif /* STM32_PLL_ENABLED */
|
|
|
|
__unused
|
|
static void clock_switch_to_hsi(void)
|
|
{
|
|
/* Enable HSI if not enabled */
|
|
if (LL_RCC_HSI_IsReady() != 1) {
|
|
/* Enable HSI */
|
|
LL_RCC_HSI_Enable();
|
|
while (LL_RCC_HSI_IsReady() != 1) {
|
|
/* Wait for HSI ready */
|
|
}
|
|
}
|
|
|
|
/* Set HSI as SYSCLCK source */
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
|
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
|
|
}
|
|
|
|
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
|
|
}
|
|
|
|
__unused
|
|
static int set_up_plls(void)
|
|
{
|
|
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || \
|
|
defined(STM32_PLL3_ENABLED)
|
|
int r;
|
|
uint32_t vco_input_range;
|
|
#endif
|
|
|
|
#if defined(STM32_PLL_ENABLED)
|
|
/*
|
|
* Switch to HSI and disable the PLL before configuration.
|
|
* (Switching to HSI makes sure we have a SYSCLK source in
|
|
* case we're currently running from the PLL we're about to
|
|
* turn off and reconfigure.)
|
|
*/
|
|
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
|
|
clock_switch_to_hsi();
|
|
}
|
|
|
|
LL_RCC_PLL1_Disable();
|
|
|
|
/* Configure PLL source : Can be HSE, HSI, MSIS */
|
|
if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
|
|
/* Main PLL configuration and activation */
|
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE);
|
|
} else if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
|
|
/* Main PLL configuration and activation */
|
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_MSIS);
|
|
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
|
|
/* Main PLL configuration and activation */
|
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI);
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/*
|
|
* Configure the EPOD booster
|
|
* before increasing the system clock freq
|
|
* and after pll clock source is set
|
|
*/
|
|
set_epod_booster();
|
|
|
|
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range, PLL1_ID);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR);
|
|
|
|
/* Set VCO Input before enabling the PLL, depends on freq used for PLL1 */
|
|
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
|
|
|
|
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
|
|
|
|
LL_RCC_PLL1FRACN_Disable();
|
|
if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) {
|
|
LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE);
|
|
LL_RCC_PLL1FRACN_Enable();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
|
|
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
|
|
LL_RCC_PLL1_EnableDomain_SAI();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
|
|
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
|
|
LL_RCC_PLL1_EnableDomain_48M();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
|
|
__ASSERT_NO_MSG((STM32_PLL_R_DIVISOR == 1) ||
|
|
(STM32_PLL_R_DIVISOR % 2 == 0));
|
|
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
|
|
LL_RCC_PLL1_EnableDomain_SYS();
|
|
}
|
|
|
|
LL_RCC_PLL1_Enable();
|
|
while (LL_RCC_PLL1_IsReady() != 1U) {
|
|
}
|
|
#else
|
|
/* Init PLL source to None */
|
|
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE);
|
|
#endif /* STM32_PLL_ENABLED */
|
|
|
|
#if defined(STM32_PLL2_ENABLED)
|
|
/* Configure PLL2 source */
|
|
if (IS_ENABLED(STM32_PLL2_SRC_HSE)) {
|
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSE);
|
|
} else if (IS_ENABLED(STM32_PLL2_SRC_MSIS)) {
|
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_MSIS);
|
|
} else if (IS_ENABLED(STM32_PLL2_SRC_HSI)) {
|
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSI);
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range, PLL2_ID);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
LL_RCC_PLL2_SetDivider(STM32_PLL2_M_DIVISOR);
|
|
|
|
LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
|
|
|
|
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);
|
|
|
|
LL_RCC_PLL2FRACN_Disable();
|
|
if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) {
|
|
LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE);
|
|
LL_RCC_PLL2FRACN_Enable();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
|
|
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
|
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2PEN);
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
|
|
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
|
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2QEN);
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
|
|
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
|
|
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2REN);
|
|
}
|
|
|
|
LL_RCC_PLL2_Enable();
|
|
while (LL_RCC_PLL2_IsReady() != 1U) {
|
|
}
|
|
#else
|
|
/* Init PLL2 source to None */
|
|
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_NONE);
|
|
#endif /* STM32_PLL2_ENABLED */
|
|
|
|
#if defined(STM32_PLL3_ENABLED)
|
|
/* Configure PLL3 source */
|
|
if (IS_ENABLED(STM32_PLL3_SRC_HSE)) {
|
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE);
|
|
} else if (IS_ENABLED(STM32_PLL3_SRC_MSIS)) {
|
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_MSIS);
|
|
} else if (IS_ENABLED(STM32_PLL3_SRC_HSI)) {
|
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSI);
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range, PLL3_ID);
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
LL_RCC_PLL3_SetDivider(STM32_PLL3_M_DIVISOR);
|
|
|
|
LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
|
|
|
|
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);
|
|
|
|
LL_RCC_PLL3FRACN_Disable();
|
|
if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) {
|
|
LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE);
|
|
LL_RCC_PLL3FRACN_Enable();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
|
|
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
|
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3PEN);
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
|
|
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
|
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3QEN);
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
|
|
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
|
|
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3REN);
|
|
}
|
|
|
|
LL_RCC_PLL3_Enable();
|
|
while (LL_RCC_PLL3_IsReady() != 1U) {
|
|
}
|
|
#else
|
|
/* Init PLL3 source to None */
|
|
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_NONE);
|
|
#endif /* STM32_PLL3_ENABLED */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void set_up_fixed_clock_sources(void)
|
|
{
|
|
|
|
if (IS_ENABLED(STM32_HSE_ENABLED)) {
|
|
/* Check if need to enable HSE bypass feature or not */
|
|
if (IS_ENABLED(STM32_HSE_BYPASS)) {
|
|
LL_RCC_HSE_EnableBypass();
|
|
} else {
|
|
LL_RCC_HSE_DisableBypass();
|
|
}
|
|
|
|
/* Enable HSE */
|
|
LL_RCC_HSE_Enable();
|
|
while (LL_RCC_HSE_IsReady() != 1) {
|
|
/* Wait for HSE ready */
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_HSI_ENABLED)) {
|
|
/* Enable HSI if not enabled */
|
|
if (LL_RCC_HSI_IsReady() != 1) {
|
|
/* Enable HSI */
|
|
LL_RCC_HSI_Enable();
|
|
while (LL_RCC_HSI_IsReady() != 1) {
|
|
/* Wait for HSI ready */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_LSE_ENABLED)) {
|
|
/* Enable the power interface clock */
|
|
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
|
|
|
|
if (!LL_PWR_IsEnabledBkUpAccess()) {
|
|
/* Enable write access to Backup domain */
|
|
LL_PWR_EnableBkUpAccess();
|
|
while (!LL_PWR_IsEnabledBkUpAccess()) {
|
|
/* Wait for Backup domain access */
|
|
}
|
|
}
|
|
|
|
/* Configure driving capability */
|
|
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
|
|
|
|
if (IS_ENABLED(STM32_LSE_BYPASS)) {
|
|
/* Configure LSE bypass */
|
|
LL_RCC_LSE_EnableBypass();
|
|
}
|
|
|
|
/* Enable LSE Oscillator */
|
|
LL_RCC_LSE_Enable();
|
|
/* Wait for LSE ready */
|
|
while (!LL_RCC_LSE_IsReady()) {
|
|
}
|
|
|
|
/* Enable LSESYS additionally */
|
|
LL_RCC_LSE_EnablePropagation();
|
|
/* Wait till LSESYS is ready */
|
|
while (!LL_RCC_LSESYS_IsReady()) {
|
|
}
|
|
|
|
LL_PWR_DisableBkUpAccess();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
|
|
/* Set MSIS Range */
|
|
LL_RCC_MSI_EnableRangeSelection();
|
|
|
|
LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
|
|
|
|
if (IS_ENABLED(STM32_MSIS_PLL_MODE)) {
|
|
__ASSERT(STM32_LSE_ENABLED,
|
|
"MSIS Hardware auto calibration needs LSE clock activation");
|
|
/* Enable MSI hardware auto calibration */
|
|
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIS);
|
|
LL_RCC_MSI_EnablePLLMode();
|
|
}
|
|
|
|
/* Enable MSIS */
|
|
LL_RCC_MSIS_Enable();
|
|
|
|
/* Wait till MSIS is ready */
|
|
while (LL_RCC_MSIS_IsReady() != 1) {
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_MSIK_ENABLED)) {
|
|
/* Set MSIK Range */
|
|
LL_RCC_MSI_EnableRangeSelection();
|
|
|
|
LL_RCC_MSIK_SetRange(STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
|
|
|
|
if (IS_ENABLED(STM32_MSIK_PLL_MODE)) {
|
|
__ASSERT(STM32_LSE_ENABLED,
|
|
"MSIK Hardware auto calibration needs LSE clock activation");
|
|
/* Enable MSI hardware auto calibration */
|
|
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIK);
|
|
LL_RCC_MSI_EnablePLLMode();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
|
|
__ASSERT((STM32_MSIK_PLL_MODE == STM32_MSIS_PLL_MODE),
|
|
"Please check MSIS/MSIK config consistency");
|
|
}
|
|
|
|
/* Enable MSIK */
|
|
LL_RCC_MSIK_Enable();
|
|
|
|
/* Wait till MSIK is ready */
|
|
while (LL_RCC_MSIK_IsReady() != 1) {
|
|
}
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_LSI_ENABLED)) {
|
|
if (!LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR)) {
|
|
/* Enable the power interface clock */
|
|
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
|
|
}
|
|
|
|
if (!LL_PWR_IsEnabledBkUpAccess()) {
|
|
/* Enable write access to Backup domain */
|
|
LL_PWR_EnableBkUpAccess();
|
|
while (!LL_PWR_IsEnabledBkUpAccess()) {
|
|
/* Wait for Backup domain access */
|
|
}
|
|
}
|
|
|
|
/* Enable LSI oscillator */
|
|
LL_RCC_LSI_Enable();
|
|
while (LL_RCC_LSI_IsReady() != 1) {
|
|
}
|
|
|
|
LL_PWR_DisableBkUpAccess();
|
|
}
|
|
|
|
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
|
|
LL_RCC_HSI48_Enable();
|
|
while (LL_RCC_HSI48_IsReady() != 1) {
|
|
}
|
|
}
|
|
}
|
|
|
|
int stm32_clock_control_init(const struct device *dev)
|
|
{
|
|
uint32_t old_hclk_freq;
|
|
int r;
|
|
|
|
ARG_UNUSED(dev);
|
|
|
|
/* Current hclk value */
|
|
old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler());
|
|
|
|
/* Set voltage regulator to comply with targeted system frequency */
|
|
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
|
|
|
|
/* Set flash latency */
|
|
/* If freq increases, set flash latency before any clock setting */
|
|
if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
|
|
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
|
|
}
|
|
|
|
/* Set up individual enabled clocks */
|
|
set_up_fixed_clock_sources();
|
|
|
|
/* Set up PLLs */
|
|
r = set_up_plls();
|
|
if (r < 0) {
|
|
return r;
|
|
}
|
|
|
|
/* Set peripheral buses prescalers */
|
|
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER));
|
|
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
|
|
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
|
|
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER));
|
|
|
|
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
|
|
/* Set PLL1 as System Clock Source */
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
|
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
|
|
}
|
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
|
|
/* Set HSE as SYSCLCK source */
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
|
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
|
|
}
|
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_MSIS)) {
|
|
/* Set MSIS as SYSCLCK source */
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
|
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) {
|
|
}
|
|
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
|
|
/* Set HSI as SYSCLCK source */
|
|
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
|
|
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
|
|
}
|
|
} else {
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Set FLASH latency */
|
|
/* If freq not increased, set flash latency after all clock setting */
|
|
if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
|
|
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
|
|
}
|
|
|
|
/* Update CMSIS variable */
|
|
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
|
|
|
|
/* configure MCO1/MCO2 based on Kconfig */
|
|
stm32_clock_control_mco_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* @brief RCC device, note that priority is intentionally set to 1 so
|
|
* that the device init runs just after SOC init
|
|
*/
|
|
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
|
|
stm32_clock_control_init,
|
|
NULL,
|
|
NULL, NULL,
|
|
PRE_KERNEL_1,
|
|
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
|
|
&stm32_clock_control_api);
|